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Multi-agent system setting

I Agent dynamics
ẋi = fi (xi ) + gi (xi )ui , i ∈ I = {1, 2, ...,N}

Stacked dynamics
ẋ = f(x) + g(x)u.

I Communication graph G = (I,E ) is connected and undirected.

* L: the associated Laplacian matrix;
* Ni : the neighboring set of agent i ;
* xloc,i : the stacked locally available state.

I Safety criterion as a constraint on the stacked state x

C = {x ∈ Rn : h(x) ≥ 0}.
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ẋ = f(x) + g(x)u.

I Communication graph G = (I,E ) is connected and undirected.

* L: the associated Laplacian matrix;
* Ni : the neighboring set of agent i ;
* xloc,i : the stacked locally available state.

I Safety criterion as a constraint on the stacked state x

C = {x ∈ Rn : h(x) ≥ 0}.⇐ Enforce safety by control barrier functions
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Control barrier function for MAS

A CBF-induced controller:

min
u∈Rm

∑
i∈I

1

2
‖ui − unom,i (xloc,i )‖2 (1)

s.t. Lfh(x) + Lgh(x)u + α(h(x)) ≥ 0. (2)

unom,i (xloc,i ): MAS task-related distributed coordination protocol.

Assumption on h(x): (2) can be re-written as∑
i∈I

a>
i (xloc,i )ui +

∑
i∈I

bi (xloc,i ) ≤ 0. (3)

Key question: how to distribute the calculation on ui while always satisfying (3)?
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Distributed implementation

S1. Endows agent i an extra scalar variable yi
and y := (y1, y2, ..., yN).

S2. For a given y , define ci , i ∈ I as

ci =
1

a>
i ai

(liy + a>
i unom,i + bi ).

and c := (c1, c2, ..., cN).

S3. For agent i , solve local QPs

ui = arg min
ui∈Rmi

1

2
‖ui − unom,i‖2

s.t. a>
i ui +

∑
j∈Ni

(yi − yj) + bi ≤ 0,
(4)

S4. y is updated by ẏ = −k0sign(Lc)

Theorem. Under mild assumptions on k0 and ai , we have

1. the solution to local QPs is identical to that of centralized QP in finite time;

2. the coupling constraint in the centralized QP is satisfied for all time.
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Simulations

MAS task: consensus, which leads to unom,i =
∑

j∈Ni
(xj − xi );

MAS safety constraint: {x ∈ R18 : h(x) = 9− x>x ≥ 0}
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(a) Time evolution of ‖u(t)− u?‖.
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Fig. 2: Numerical results involving 9 agents solving the static QP with a coupling constraint.
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(a) Case 1: nominal controller.
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(b) Case 2: centralized CBF controller.
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(c) Case 3: distributed CBF controller.

Fig. 3: System trajectories of a multi-agent system under three different controllers. The black lines denote the communication
links among the agents, and the green dash lines are the state trajectories of each agent; the blue star is the final state.

the division by it (when obtaining ci as in (21)) may cause
numerical issues. As a future work, we plan to remove the
boundedness assumptions on ai. Another direction for future
work is to extend the result to the multiple safety constraints
case, where more general safety constraints can be tackled.

V. CONCLUSION

In this work, we proposed a distributed implementation
scheme for CBF-induced quadratic programs for multi-
agent systems, where each agent solves a local QP and
locally adapts an auxiliary variable. Under the assumption
that the parameters of the coupling constraint are slowly
time-varying, the proposed implementation solves the CBF-
induced QP in finite time and guarantees the satisfaction of
the coupling constraint for all time. These two properties are
of interest because they guarantee optimality of the control
signal to the CBF-induced QP and safety of the multi-
agent system. We also applied our results in a static QP
problem and a consensus control problem with a stacked
state boundedness constraint.
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Questions

For more details, find me at

FrB16.7

or, reach me via

xiaotan@kth.se
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