Distributed implementation of control barrier functions for multi-agent systems

Xiao Tan and Dimos V. Dimarogonas

KTH Royal Institute of Technology, Sweden

ACC 2022

June 10, 2022

Multi-agent system setting

 \blacktriangleright Agent dynamics

$$
\dot{\mathbf{x}}_i = \mathbf{f}_i(\mathbf{x}_i) + \mathbf{g}_i(\mathbf{x}_i) \mathbf{u}_i, i \in \mathcal{I} = \{1, 2, ..., N\}
$$

Stacked dynamics

$$
\dot{\mathbf{x}} = \mathfrak{f}(\mathbf{x}) + \mathfrak{g}(\mathbf{x})\mathbf{u}.
$$

In Communication graph $G = (\mathcal{I}, E)$ **is connected and undirected.**

- $*$ L: the associated Laplacian matrix;
- * N_i : the neighboring set of agent i;
- * $x_{loc,i}$: the stacked locally available state.

 \triangleright Safety criterion as a constraint on the stacked state x

$$
\mathcal{C} = \{ \mathbf{x} \in \mathbb{R}^n : h(\mathbf{x}) \geq 0 \}.
$$

Multi-agent system setting

 \blacktriangleright Agent dynamics

$$
\dot{\mathbf{x}}_i = \mathbf{f}_i(\mathbf{x}_i) + \mathbf{g}_i(\mathbf{x}_i) \mathbf{u}_i, i \in \mathcal{I} = \{1, 2, ..., N\}
$$

Stacked dynamics

$$
\dot{\mathbf{x}} = \mathfrak{f}(\mathbf{x}) + \mathfrak{g}(\mathbf{x})\mathbf{u}.
$$

- **In Communication graph** $G = (\mathcal{I}, E)$ **is connected and undirected.**
	- $*$ L: the associated Laplacian matrix;
	- $*$ N_i: the neighboring set of agent i;
	- $*$ $x_{loc,i}$: the stacked locally available state.

 \triangleright Safety criterion as a constraint on the stacked state x

 $\mathcal{C} = \{\mathbf{x} \in \mathbb{R}^n : h(\mathbf{x}) \geq 0\}$. \Leftarrow Enforce safety by control barrier functions

Control barrier function for MAS

A CBF-induced controller:

$$
\min_{\boldsymbol{u} \in \mathbb{R}^m} \sum_{i \in \mathcal{I}} \frac{1}{2} ||\boldsymbol{u}_i - \boldsymbol{u}_{nom,i}(\boldsymbol{x}_{loc,i})||^2
$$
\n
$$
\text{s.t. } L_f h(\boldsymbol{x}) + L_{\mathfrak{g}} h(\boldsymbol{x}) \boldsymbol{u} + \alpha(h(\boldsymbol{x})) \ge 0. \tag{2}
$$

 $u_{nom,i}(x_{loc,i})$: MAS task-related distributed coordination protocol.

Assumption on $h(x)$: (2) can be re-written as

$$
\sum_{i\in\mathcal{I}}\boldsymbol{a}_i^{\top}(\mathbf{x}_{loc,i})\boldsymbol{u}_i+\sum_{i\in\mathcal{I}}b_i(\mathbf{x}_{loc,i})\leq 0.
$$
 (3)

K ロ X K @ X K 할 X K 할 X (할 X M Q Q Q $3/6$

Control barrier function for MAS

A CBF-induced controller:

$$
\min_{\boldsymbol{u} \in \mathbb{R}^m} \sum_{i \in \mathcal{I}} \frac{1}{2} ||\boldsymbol{u}_i - \boldsymbol{u}_{nom,i}(\boldsymbol{x}_{loc,i})||^2
$$
\n
$$
\text{s.t. } L_f h(\boldsymbol{x}) + L_{\mathfrak{g}} h(\boldsymbol{x}) \boldsymbol{u} + \alpha(h(\boldsymbol{x})) \ge 0. \tag{2}
$$

 $u_{nom,i}(x_{loc,i})$: MAS task-related distributed coordination protocol.

Assumption on $h(x)$: (2) can be re-written as

$$
\sum_{i\in\mathcal{I}}\boldsymbol{a}_i^\top(\boldsymbol{x}_{loc,i})\boldsymbol{u}_i+\sum_{i\in\mathcal{I}}b_i(\boldsymbol{x}_{loc,i})\leq 0.
$$
 (3)

Key question: how to distribute the calculation on u_i while always satisfying (3)?

Distributed implementation

- S1. Endows agent *i* an extra scalar variable y_i and $y := (y_1, y_2, ..., y_N)$.
- S2. For a given \boldsymbol{y} , define $c_i, i \in \mathcal{I}$ as

$$
c_i = \frac{1}{\mathbf{a}_i^{\top} \mathbf{a}_i} (\mathbf{l}_i \mathbf{y} + \mathbf{a}_i^{\top} \mathbf{u}_{\text{nom},i} + b_i).
$$

and
$$
c := (c_1, c_2, ..., c_N)
$$
.

S3. For agent *i*, solve local QPs

$$
\mathbf{u}_i = \arg \min_{\mathbf{u}_i \in \mathbb{R}^{m_i}} \frac{1}{2} ||\mathbf{u}_i - \mathbf{u}_{nom, i}||^2
$$

s.t.
$$
\mathbf{a}_i^\top \mathbf{u}_i + \sum_{j \in N_i} (y_i - y_j) + b_i \leq 0,
$$
 (4)

S4. **y** is updated by
$$
\dot{y} = -k_0 \text{sign}(Lc)
$$

Distributed implementation

- S1. Endows agent *i* an extra scalar variable v_i and $\mathbf{v} := (v_1, v_2, ..., v_N)$.
- S2. For a given \boldsymbol{y} , define $c_i, i \in \mathcal{I}$ as

$$
c_i = \frac{1}{\mathbf{a}_i^{\top} \mathbf{a}_i} (\mathbf{l}_i \mathbf{y} + \mathbf{a}_i^{\top} \mathbf{u}_{nom, i} + b_i).
$$

S3. For agent
$$
i
$$
, solve local QPs

$$
\boldsymbol{u}_i = \arg \min_{\boldsymbol{u}_i \in \mathbb{R}^{m_i}} \frac{1}{2} ||\boldsymbol{u}_i - \boldsymbol{u}_{nom,i}||^2
$$

s.t. $\boldsymbol{a}_i^{\top} \boldsymbol{u}_i + \sum_{j \in N_i} (y_i - y_j) + b_i \leq 0,$ (4)

and $\mathbf{c} := (c_1, c_2, ..., c_N)$. S4. **v** is updated by $\dot{\mathbf{v}} = -k_0 \text{sign}(L\mathbf{c})$

Theorem. Under mild assumptions on k_0 and a_i , we have

- 1. the solution to local QPs is identical to that of centralized QP in finite time;
- 2. the coupling constraint in the centralized QP is satisfied for all time.

Simulations

MAS task: consensus, which leads to $u_{nom,i} = \sum_{j \in N_i} (x_j - x_i);$ MAS safety constraint: $\{x \in \mathbb{R}^{18} : h(x) = 9 - x^\top x \ge 0\}$ task: <mark>consensus</mark>, which leads to safety constraint: $\{X \in \mathbb{R}\}$ om, $i=\sum_{j\in N_i}(\mathsf{x}_j-\mathsf{x}_i);$ $\mathbf{y} - \mathbf{x} \times \mathbf{x} \geq \mathbf{0}$

(a) Case 1: nominal controller.

(b) Case 2: centralized CBF controller.

(c) Case 3: distributed CBF controller.

Questions

For more details, find me at

FrB16.7

or, reach me via

xiaotan@kth.se

6 / 6

 299

メロトメ 御 トメ ミトメ きょうき