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Motivation

Constrained attitude maneuvers
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Problem illustration

e attitude dynamics

R = R[w]x, _ ._< O—sz)
Jw+ [W]XJW = u, with [W]X T —(;.3)2 u?l 01 ' (1)

1
Xiao Tan, Soulaimane Berkane, and Dimos V. Dimarogonas. Constrained attitude maneuvers on SO(3):
Rotation space sampling, planning and low-level control. Automatica, 112, 2020.
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Problem illustration

e attitude dynamics

R = R[w]x, with [w]x = < (33 0 wf)l)' (1)

—wy w1 0

Jo + [w]xJw = u,

Sampling set

U= {R],RQ,...7R,',...7R,~,}.
Index set N'={1,2,--- , n}.

Cell region S; := {R € SO(3) :
d(R,R) <0,ie N}, 0¢€(0,7/2).
The neighborhood set N; of R;
Ni:={Re U:d(R,R) <20,R+#
Ri,i e N'}.
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Rotational space SO(3)

1
Xiao Tan, Soulaimane Berkane, and Dimos V. Dimarogonas. Constrained attitude maneuvers on SO(3):
Rotation space sampling, planning and low-level control. Automatica, 112, 2020.
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Reference generation: Bézier curve

Bézier curve: recursive linear interpolation

http://www.malinc.se/m/DeCastel jauAndBezier.php.
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http://www.malinc.se/m/DeCasteljauAndBezier.php

Reference generation: Bézier curve

A concatenated Bézier curve ¢ : [0, m]—> SO(3) is defined as

CR07R17R1,2(7—) T E [07 1)»
— CRi_1,i,Ri,Riit1 (r—i+1) 7eli—1,i),
c(r) ie{2,3,-,m—1},
CRy_1.mRmRA(T—m+1) 7€ [m—1m],

where R; ;i1 := Rjexp(1/2log(R. Rit1)).
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Reference generation: Bézier curve

The Bézier curve has the following properties:
e ¢(0) = Ry, c(m) = Ry;
e ¢(r) e UM, S; for T € [0, m];
e ¢(7)is a C? curve;

*To obtain the reference trajectory (parametrized with time t), we need re-parametrize the paths with
7(t) : [0, T¢] — [0, m], which is neglected here.
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Simulation: Geodesic path v.s. Bézier curve
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Trajectory of x-axis. Trajectory of y-axis. Trajectory of z-axis.

Blue: geodesic path; Red : Bézier curve.
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Simulation: Geodesic path v.s. Bézier curve
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Blue: geodesic path; Red : Bézier curve.
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Control barrier function design
Define r; : SO(3) — R
ri(R) = e — |Ri — RIIZ/2. (2)
with € := 4sin?(6/2).
. r;(R) >0iff Re S;.

2
P. Glotfelter, J. Cortes, and M. Egerstedt, Nonsmooth barrier functions with applications to multi-robot
systems, |EEE control systems letters, 2017.
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Control barrier function design
Define r; : SO(3) — R
ri(R) = e — |Ri — RIIZ/2. (2)
with € := 4sin?(6/2).
. r;(R) >0iff Re S;.

[ ]
R(t) € UiexSi < ryé%((r,-(R(t))) >0, fort>0. (3)

max operation = nonsmooth analysis and a complex
formulation[2].

2
P. Glotfelter, J. Cortes, and M. Egerstedt, Nonsmooth barrier functions with applications to multi-robot
systems, |EEE control systems letters, 2017.
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CBF design: Non-smoothness

e Define

where constant § > 0.

Here
0 x € (—o0,0] l :
s(x) =1 sl x€(0,1), . /
x € [1,00) )
with p(x) := (1/x)e " 1/x. 7
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CBF design: Non-smoothness

e Define

h(R) =3 s(ri(R)/e) 4, (4)

where constant § > 0.

lllustration of Cp, in the planar case with different conservativeness &’s.
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CBF design: High-order systems

To comply with the control affine form, rewriting the attitude
dynamics, we have
x = f(x) + gu,

rnaw3—rswz
r3wi—rniws

rni riwy—rowi
rn2 row3—r3w?
_ 12 _ r3wi—rniws ([ Ogx3
where x = w | € R¥ f(x)=| miwr—row; |,&= 5
wy r32w3—r33wy
w3 r33wi—r3iws

r31w2 —r3wi
I ([ Je)
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CBF design: High-order systems

To comply with the control affine form, rewriting the attitude
dynamics, we have
x = f(x) + gu,

rnaw3—rswz
r3wi—rniws

rni riwy—rowi
r2 raw3z—r3w?2
_ 12 _ r3wi—rniws ([ Ogx3
where x = s e R, f(x) = mwr—rpwr  [+8 = { ;1 )

w> r32w3—r33wy
w3 r3wi—riws

r3jw—rpwi

J7H(~[w]x Jw)

Lgh(x) = 0 for all x. Cannot apply ZBF directly.
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CBF design: Intuitions behind singularity-free
HOCBF

Prop.3: D C Cppe.

Cp:={z: h(z) >0} Y .
Che ={x:h(x) > &}

b(x):=x (M)

sufficien?"smooth,
nondecreasing,
x(0) =0,

D= {z : LyLih(z) = 0} x(x)=1for x > 1.
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CBF design: Intuitions behind singularity-free
HOCBF

Prop.3: D C Cppe.

Cp,:={x: h(x) > 0} Y
Che ={x:h(x) > &}

b(x):=x (M)

sufficient smooth,
nondecreasing,

x(0) =0,

D :={x: LyLsh(x) = 0} X(X) =1 for x Z 1.

- Cp = Cp.
- For x € Cp,¢, we derive that, for 1 < k <,
b(x)=1>0
bi(x) := b(x) + a(b(x)) = (1) > 0
LeLeb(x)u + Lebi(x) + B(b1(x)) = Boa(l) >0
Thus, b is a high-order CBF.
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Singularity-free HOCBF

Concretely, the modified controller is given by
; 2
u(x) = arg min ||u — Unoml|
ueR3

s.t.  Lgleb(x)u+ Lebi(x) + B(b1(x)) > 0.
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Singularity-free HOCBF

Concretely, the modified controller is given by
; 2
u(x) = arg min ||u — Unoml|
ueR3

s.t.  Lgleb(x)u+ Lebi(x) + B(b1(x)) > 0.

Theorem

For the attitude control system in (1), the controller (5) renders
the set Cp N Cp, forward invariant.
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Simulation: Reference tracking controller

An additive control signal u,44(t) for t € [20,25] is used in Red
and Cases to imitate human inputs to the system.

Trajectory of x-axis. Trajectory of y-axis. Trajectory of z-axis.

Blue: Reference tracking control with no additive signal; control barrier function exists;

Red: Reference tracking control with additive signal; control barrier function does not exist;

Reference tracking control with additive signal; control barrier function exists.
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Conclusion

In the talk, we present

e a Bézier curve-based reference trajectory for cell transitions in

S50(3), and,
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Conclusion

In the talk, we present

e a Bézier curve-based reference trajectory for cell transitions in
S50(3), and,

e a high-order barrier function that ensures the transient
performance for cell transitions.
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Latest work

High-order control barriers:
e forward invariance and asymptotic stability of the set C;

e singularity-free, performance-critical design.

Xiao Tan, Wenceslao Shaw-Cortez, and Dimos V. Dimarogonas.
High-order barrier functions: robustness, safety and performance-critical
control. IEEE Transactions of Automatic Control, under review.
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