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Preliminary
• Consider a control-affine system

ẋ = f(x) + g(x)u,u ∈ U.

• Multiple state constraints ⇒ C = {x : hi(x) ≥ 0, i ∈ I}.

• Recall the CBF-based controller with one CBF hi(x)

u(x) = arg min
v∈U
‖v − unom(x)‖

s.t. Lfhi(x) + Lghi(x)v + αi(hi(x)) ≥ 0
(1)

• The CBF-based controller with multiple CBFs

u(x) = arg min
v∈U
‖v − unom(x)‖

s.t. Lfhi(x) + Lghi(x)v + αi(hi(x)) ≥ 0,∀i ∈ I.
(2)

• (2) is feasible for all x ∈ D ⊇ C⇔ hi(x), i ∈ I are compatible.
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Preliminary

In case of perturbations, we define hi(x), i ∈ I are robustly
compatible with robustness level η > 0 if ∀x ∈ D,

∃u ∈ U, Lfhi(x) + Lghi(x)u + αi(hi(x)) ≥ η,∀i ∈ I. (3)

In this work, we propose an algorithmic solution to verify or falsify
the hypothesis that hi(x), i ∈ I are (robustly) compatible. This
algorithm will run once and offline before online implementation.
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Problem statement
For notational brevity, given hi(x), αi(·) and the system dynamics,
we denote

A(x) :=


Lgh1(x)
Lgh2(x)

...
LghN (x)

 , b(x) :=


Lfh1(x) + α1(h1(x))
Lfh2(x) + α2(h2(x))

...
LfhN (x) + αN (hN (x))

 .
The problem is thus to verify whether

sup
u∈U

A(x)u + b(x) ≥ 0,∀x ∈ D. (4)

for compatibility, and whether

sup
u∈U

A(x)u + b(x) ≥ η1,∀x ∈ D. (5)

for robust compatibility with robustness level η > 0.

For simplicity, we assume 1) C is compact and 2) U is convex.
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Proposed scheme: Overview

C Partitioning Probing

Checking c(x) and ρ(x)

Verified To be refined Falsified

Refining

r

c(x) > 0, ρ(x) ≥ r c(x) ≥ 0, ρ(x) < r c(x) < 0

Sampling with n-cubes

B(x, r) = {y ∈ Rn : y = x +
∑

i

kirei,∀ki ∈ [−1/2, 1/2]}.
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Grid sampling

and {ei, i = 1, 2, ..., n} the canonical basis of Rn. For x ∈
Rn, r > 0, define

Plattice(x, r) = {y ∈ Rn : y = x+
∑

i∈{1,2,...,n}
airei,

∀ai ∈ N, i = {1, 2, ..., n}}, (9)

B(x, r) = {y ∈ Rn : y = x+
∑

i∈{1,2,...,n}
kirei,

∀ki ∈ [−1/2, 1/2], i ∈ {1, 2, ..., n}}. (10)

Here Plattice denotes a set of points that forms a regular lattice
with size r in Rn and x ∈ Plattice; B(x, r) denotes a n-cube
in Rn centered at x with size r.

Now we propose the following grid sampling algorithm.
First we calculate the range limit ρmin

ei
and ρmax

ei
, i =

1, 2, ..., n of the set S (Line 1 of Algorithm 1). Since S is
compact, S is a subset of the hyperrectangle [ρmin

e1
, ρmax

e1
]×

[ρmin
e2

, ρmax
e2

] × ... × [ρmin
en

, ρmax
en

] (Line 2). Then we con-
struct a regular lattice Plattice around the center point of
the hyperrectangle with size r. In Line 3, we obtain a set
Pcand by intersecting Plattice with the inflated hyperrectangle
[ρmin

e1
− r/2, ρmax

e1
+ r/2]× [ρmin

e2
− r/2, ρmax

e2
+ r/2]× ...×

[ρmin
en
− r/2, ρmax

en
+ r/2]. We then collect all the points p

in Pcand around which the n-cube with size r intersects with
the set S (Line 4). The algorithm returns G as a Cartesian
product of P and the singleton {r}.

Algorithm 1 GridSampling

Require: Compact set S ⊂ Rn, lattice size r
1: Calculate ρmin

ei
= minx∈S e⊤i x, ρ

max
ei

= maxx∈S e⊤i x
for i ∈ {1, 2, ..., n}.

2: Construct a regular lattice Plattice around

(
ρmin
e1

+ρmax
e1

2 ,
ρmin
e2

+ρmax
e2

2 , ...,
ρmin
en

+ρmax
en

2 ) with size r.
3: Construct Pcand = Plattice ∩ [ρmin

e1
− r/2, ρmax

e1
+ r/2] ×

[ρmin
e2
−r/2, ρmax

e2
+r/2]× ...× [ρmin

en
−r/2, ρmax

en
+r/2].

4: P = {p ∈ Pcand : B(p, r) ∩ S ≠ ∅}, G = P × {r}.
5: return G.

Proposition 2. Given a compact set S ⊂ Rnand a lattice
size r > 0, then the following hold:

1) G, from Algorithm 1, is of finite cardinality, and
2) S ⊆ ∪p∈PB(p, r), where P is given in Algorithm 1,

Line 4.

Proof. Since the set S is compact, the lower and upper range
limit ρmin

ei
and ρmax

ei
, i = 1, 2, .., n, given in Line 1 of

Algorithm 1, are finite for every dimension. This leads to
the fact that the hyperrectangle [ρmin

e1
− r/2, ρmax

e1
+ r/2]×

[ρmin
e2
− r/2, ρmax

e2
+ r/2] × ... × [ρmin

en
− r/2, ρmax

en
+ r/2]

is bounded. Recall that by definition (9), Plattice denotes a
regular lattice in Rn, and we thus know that Pcand has a finite
cardinality, which implies that G also has a finite cardinality.
Now we show Property 2) by contradiction. Assume that
there exists x ∈ S and x /∈ ∪p∈PB(p, r). In view of
the definition of P , this implies that x /∈ ∪p∈PcandB(p, r).
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Fig. 1: Grid sampling of a set S in 2-D. Here the set S
is shown in violet, Bound(S) is shown in gray, the 2-cubes
generated from Algorithm 1 are in light green, and all the
points in blue form Pcand. We observe that S ⊂ Bound(S)
and S is over-approximated by the union of the 2-cubes.

This yields a contradiction since x ∈ S ⊆ [ρmin
e1

, ρmax
e1

] ×
[ρmin

e2
, ρmax

e2
] × ... × [ρmin

en
, ρmax

en
] ⊆ ∪p∈PcandB(p, r). The

former set inclusion is trivial in view of the definition of
ρmin
ei

, ρmax
ei

. The latter set inclusions can be straightforwardly
checked by discussing all possible relations of the points in
Pcand and the hyberrectangle.

From now on, we denote Bound(S) the bounding box
[ρmin

e1
− r/2, ρmax

e1
+ r/2]× [ρmin

e2
− r/2, ρmax

e2
+ r/2]× ...×

[ρmin
en
− r/2, ρmax

en
+ r/2] of a compact set S .

Example 1. Here we show an example of Algorithm 1 with
the set S = {x ∈ R2 : 1 ≤ x⊤Qx ≤ 2, where Q =(
0.5 0.1
0.1 0.3

)
} and r = 0.25. From Fig. 1, we observe that G

has a finite cardinality and S ⊆ ∪p∈PB(p, r). It is worth
noting that ∪p∈PB(p, r) ⊈ Bound(S), where P is given in
Algorithm 1 Line 4, as shown in Fig. 1.

B. Proposed verification algorithm

Now consider the compatibility verification problem in (7).
For any x ∈ Bound(C), define

c(x) = max
u,t

t

s.t. A(x)u+ b(x) ≥ t1N ,

u ∈ U.

(11)

In the case that U is a polytopic set, c(x) is obtained by
solving a linear program. In the general case where U is
convex, c(x) is obtained from a convex optimization. One
interpretation is that c(x) indicates the largest robustness
level at x up to which the CBF conditions or the input
constraints are to be breached.

Recall that the candidate CBFs hi(x), i = 1, 2, ..., N are
continuously differentiable, the vector fields f(x) and g(x)
are locally Lipschitz, and thus A(x), b(x) in (7) are locally
Lipschitz. Specifically, denote the respective Lipschitz con-
stants in the bounding box Bound(C) with respect to the l∞

3
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The following holds:
1) G, from Algorithm 1, is of finite cardinality, and
2) S ⊆ ∪p∈PB(p, r), where P is the set of sampling points.
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Verification algorithm: Lipschitz properties
I For any x ∈ Bound(C), define

c(x) = max
u,t

t

s.t. A(x)u + b(x) ≥ t1N ,

u ∈ U.

(6)

• convex optimization; c(x): largest robustness level at x.
I Recall A(x), b(x) are Lipschitz functions, let the respective

Lipschitz constants in Bound(C) w.r.t. the l∞ norm as LA,∞, Lb,∞.

I Given any x ∈ Bound(C), c(x) > 0, then for all x′ ∈ B(x, ρ(x))
∩Bound(C), supv∈UA(x′)v + b(x′) ≥ 0 holds with

ρ(x) = 2c(x)
LA,∞‖u?(x)‖∞ + Lb,∞

, (7)

where u?(x) is the optimal solution to (6) at x.
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Verification algorithm

If c(x) > 0 for some x, based on the Lipschitz continuity
of A(x) and b(x), there must exist a neighborhood around
x where the CBFs hi(x) are compatible. This is formally
shown below.

Proposition 3. For any x ∈ Bound(C), if c(x) > 0, then
supv∈U A(x′)v + b(x′) ≥ 0 for all x′ ∈ B(x, ρ(x)) ∩
Bound(C) with

ρ(x) =
2c(x)

LA,∞∥u⋆(x)∥∞+Lb,∞
, (13)

where LA,∞, Lb,∞ are the Lipschitz constants of A(x), b(x)
with respect to the l∞ norm as per (12), respectively, and
u⋆(x) is the optimal solution to (11) at x.

Proof. For any x′ ∈ B(x, ρ) ∩ Bound(C), we have

A(x′)u⋆(x) + b(x′) = (A(x′)−A(x))u⋆(x)

+ (b(x′)− b(x)) +A(x)u⋆(x) + b(x) (14)

In view of (12), we have

∥(A(x′)−A(x))u⋆(x) + b(x′)− b(x)∥∞
≤ ∥A(x′)−A(x)∥∞∥u⋆(x)∥∞+∥b(x′)− b(x)∥∞
≤ LA,∞∥x− x′∥∞∥u⋆(x)∥∞+Lb,∞∥x− x′∥∞

(15)

In view of x′ ∈ B(x, ρ), and ρ in (13), we obtain
∥x− x′∥∞≤ ρ/2 = c(x)

LA,∞∥u⋆(x)∥∞+Lb,∞
. Thus, ∥(A(x′)−

A(x))u⋆(x) + b(x′) − b(x)∥∞≤ c(x). From (14) and
A(x)u⋆(x) + b(x) ≥ c(x)1, we further obtain A(x′)u⋆ +
b(x′) ≥ 0, which completes the proof.

Algorithm 2 CompatibilityChecking

Require: hi(x), αi(·), initial size r0, decaying factor λ
1: Initialization:
2: k = 0, obtain C, G0 ← GS(C, r0), G1 = ∅.
3: while Gk ̸= ∅ do
4: for each (x, r) ∈ Gk do
5: c← c(x), ρ← ρ(x).
6: if c < 0 then ▷ Found an incompatible state;
7: return False.
8: else if ρ ≥ r then ▷ Compatibility checked;
9: remove (x, r) from Gk.

10: else ▷ Compatibility partially checked;
11: remove (x, r) from Gk, r′ ← λr.
12: Gk+1 ← Gk+1 ∪ GS(B(x, r) \B(x, ρ), r′).
13: end if
14: end for
15: k = k + 1, Gk+2 = ∅.
16: end while
17: return True.
*GS stands for GridSampling given in Algorithm 1.

Built on above analysis, we design a compatibility check-
ing algorithm using grid sampling and refinement. As given
in Algorithm 2, the safety set C is firstly over-approximated
using GridSampling Algorithm with an initial lattice size
r0. This will yield a finite set G0 of n-cubes that is to

be checked later. Recall that in Problem formulation (7)
and (8), we need to check the compatibility over a set
D ⊇ C. Here we take D = ∪(xi,r0)∈G0

B(xi, r0), which
is a super set of C from Proposition 2, item 2). Choosing r0
is important and depends on how large buffering zone one
allows outside the safety set. For each n-cube B(x, r) in
Gk, represented as a (x, r) pair in Line 4, we calculate the
robustness level c and the size ρ of a guaranteed compatible
n-cube centered at x from (11) and (13), respectively. If
c < 0, then an incompatible state is found and the algorithm
terminates and returns False. If ρ ≥ r, then we know that
the CBFs are compatible for all the states within the n-cube
B(x, r) and we remove (x, r) from Gk; otherwise, we refine
the remaining unchecked region B(x, r) \ B(x, ρ) with a
discounted lattice size r′ = λr and include the new n-cubes
in Gk+1. After checking all the n-cubes in Gk, we iterate
the process again for Gk+1. Once Gk+1 = ∅, the algorithm
terminates and returns True.

The following properties provide a guarantee on the finite-
step termination of the algorithm and the compatibility
property certified from its termination.

Theorem 1. Given hi(x),αi(·) with i ∈ I, an initial lattice
size r0 > 0 and 0 < λ < 1, we have:

1) If Algorithm 2 terminates, it gives verification or falsi-
fication on the CBF compatibility;

2) if the CBFs hi(x) are robustly compatible with ro-
bustness level η > 0 in Bound(C), then Algorithm (2)
terminates in finite steps.

3) If a lower bound of the lattice size r is incorporated,
i.e., Algorithm 2 terminates if r ≤ r in Line 4, then
Algorithm 2 terminates in finite steps and gives one of
the following three results:

i. hi(x), i ∈ I are compatible;
ii. hi(x), i ∈ I are incompatible;

iii. hi(x), i ∈ I are not robustly compatible with robust
level greater than

η′ = λ−1r(max
u∈U

LA,∞∥u∥∞+Lb,∞)/2.

Proof to this theorem is omitted here due to page limits.
Interested readers are referred to [17] for details as well as
a thorough discussion on the proposed algorithm.

IV. CASE STUDIES

In this section we show more details on the algorithm im-
plementation, especially the Lipschitz constant calculation,
and demonstrate the efficacy of our proposed verification
algorithm in several different scenarios. All the simulations
are done using Matlab Parallel Computing Toolbox on an
Intel i7-8650U CPU laptop.

Example 2. Consider a 2 − D system with state variable
x = (x1, x2), input variable u = (u1, u2), dynamics

(
ẋ1

ẋ2

)
=

(
x1 + x2

−x2
1/2

)

︸ ︷︷ ︸
f(x)

+

(
1 0
0 1

)

︸ ︷︷ ︸
g(x)

(
u1

u2

)
, (16)
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algorithm in several different scenarios. All the simulations
are done using Matlab Parallel Computing Toolbox on an
Intel i7-8650U CPU laptop.

Example 2. Consider a 2 − D system with state variable
x = (x1, x2), input variable u = (u1, u2), dynamics

(
ẋ1

ẋ2

)
=

(
x1 + x2

−x2
1/2

)

︸ ︷︷ ︸
f(x)

+

(
1 0
0 1

)

︸ ︷︷ ︸
g(x)

(
u1

u2

)
, (16)
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Some discussions
I Computational concerns: exponential growth of # of n-cubes

• check only around the safety boundary;
• process n−cubes in parallel.

I Generalization to a time-varying setting
• Let x̃ := (x, t). Then, ˙̃x =

(
f(x̃)

1

)
+
(
g(x̃)

0

)
u and

C̃ = {x̃ ∈ Rn+1 : hi(x̃) ≥ 0,∀i ∈ I}.
• Only a bounded time interval can be considered.

I Alternative grid sampling methods:
• n-spheres BS(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r}
• However, generating n-spheres with a small overlapping ratio is

difficult in high-dimensional spaces.
I Other improvements

• more precise LA,∞, Lb,∞;
• updated lattice size using r′ ← min(ρ, λr)

9 / 14



Case studies: Ex.1
Example 1: Consider a 2−D system with x = (x1, x2),
u = (u1, u2), dynamics(

ẋ1
ẋ2

)
=
(
x1 + x2
−x2

1/2

)
︸ ︷︷ ︸

f(x)

+
(

1 0
0 1

)
︸ ︷︷ ︸

g(x)

(
u1
u2

)
,

and U = {(u1, u2) : |u1| ≤ 3, |u2| ≤ 3}. The two CBF candidates
are

h1(x) = x>Qx− 1
h2(x) = 2− x>Qx

where Q = ( 0.5 0.1
0.1 0.3 ). C = {x : hi(x) ≥ 0, i = 1, 2}. The extended

class K functions are chosen as α1(v) = v, α2(v) = v, v ∈ R.

10 / 14



Case studies: Ex.1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

(a) First iteration, r = 0.25. (b) Second iteration, r = 0.0625. (c) Third iteration, r = 0.0156.

Fig. 2: Execution process of CompatibilityChecking in Example 2. The safety region is between the two ellipsoids.
Compatible 2-cubes: 2-cubes within which the CBFs are verified to be compatible (in green); to-be-refined 2-cubes: 2-cubes
that need further refinement (in yellow). (a) First iteration with the lattice size r = 0.25. All of the total 200 2-cubes are
to-be-refined 2-cubes. (b) Second iteration with the lattice size r = 0.0625. The refined 2-cubes are checked and 3204 out
of 4869 are verified to be compatible 2-cubes, and 1665 2-cubes are refined again. (c) Third iteration with the lattice size
r = 0.0156. All the 2-cubes are compatible. Algorithm 2 thus gives verification on the compatibility of the CBFs.

and demonstrate the efficacy of our proposed verification
algorithm in several different scenarios.

Example 2. Consider a 2 − D system with state variable
x = (x1, x2), input variable u = (u1, u2), dynamics

(
ẋ1

ẋ2

)
=

(
x1 + x2

−x2
1/2

)

︸ ︷︷ ︸
f(x)

+

(
1 0
0 1

)

︸ ︷︷ ︸
g(x)

(
u1

u2

)
, (17)

and the input constraint set U = {(u1, u2) : |u1|≤ 3, |u2|≤
3}. The two CBF candidates are

h1(x) = x⊤Qx− 1 (18)

h2(x) = 2− x⊤Qx (19)

where Q =
(
0.5 0.1
0.1 0.3

)
. The safety set is C = {x : hi(x) ≥

0, i = 1, 2}. The corresponding extended class K functions
are chosen as α1(v) = v, α2(v) = v, v ∈ R. The CBF
conditions are then given by

A(x) :=

(
∇⊤h1(x)
∇⊤h2(x)

)
, b(x) :=

(
∇⊤h1(x)f(x) + h1(x)
∇⊤h2(x)f(x) + h2(x)

)
.

where ∇h1(x) = (Q + Q⊤)x = 2Qx,∇h2(x) = −2Qx.
Choose the initial lattice size r0 = 0.25. By applying
GridSampling(C, r0), we obtain, as shown in Fig. 1,
Bound(C) = [−2.2, 2.2]× [−2.8, 2.8].

Now we calculate the Lipschitz constants LA,∞, Lb,∞
in Bound(C). We note that the Lipschitz constants can
be obtained by considering each CBF individually, taking
advantage of the fact that each row of A(x) and b(x)
corresponds to one CBF. By definition, LA,∞ needs to satisfy

∥A(x)−A(x′)∥∞= ∥
(

2(x−x′)⊤Q

−2(x−x′)⊤Q

)
∥∞≤ LA,∞∥x−x′∥∞

(20)

for any x,x′ in Bound(C). Let ai(x) be the ith row of A(x).
Condition (20) is equivalent to

∥ai(x)− ai(x
′)∥1= ∥2Q(x− x′)∥1
≤ LA,∞∥x− x′∥∞,∀i ∈ {1, 2}. (21)

This is implied by the condition maxx,x′
∥2Q(x−x′)∥1

∥x−x′∥∞
≤

LA,∞. Using the inequality ∥v∥∞≤ ∥v∥1≤ n∥v∥∞,∀v ∈
Rn, we have

max
x,x′,x ̸=x′

∥2Q(x− x′)∥1
∥x− x′∥∞
≤ 2 max

x,x′,x̸=x′

∥2Q(x− x′)∥1
∥x− x′∥1

= 4∥Q∥1 (22)

The equality holds due to the definition of induced matrix
norm. This reveals that LA,∞ = 4∥Q∥1= 2.4 satisfies (20).2

Similarly, Lb,∞ needs to satisfy

∥b(x)− b(x′)∥∞≤ Lb,∞∥x− x′∥∞ (23)

for any x,x′ in Bound(C). Let bi(x) be the ith row of b(x).
Thus, (23) is equivalent to

|bi(x)− bi(x
′)|≤ Lb,∞∥x− x′∥∞,∀i = {1, 2} (24)

for any x,x′ in Bound(C). Recall that

b1(x) = 2x⊤Qf(x) + x⊤Qx− 1 (25)

b2(x) = 2x⊤Qf(x)− x⊤Qx+ 2 (26)

We have ∇b1(x) = 2Qf(x) + 2 ∂f
∂x (x)Qx + 2Qx, where

∂f
∂x (x) =

(
1 1

−x1 0

)
. Based on Taylor expansion, b1(x

′) =
b1(x)+∇b⊤1 (x)(x′−x)+o(x′−x), where o(x′−x) repre-
sents high-order terms with respect to x′−x. Thus, |b1(x)−
b1(x

′)|= |∇b⊤1 (x)(x′ − x) + o(x′ − x)|≤ |∇b⊤1 (x)(x′ −

2Here ∥Q∥1, where Q is a matrix, refers to the induced matrix norm and
can be calculated as the maximum absolute column sum of Q.

6

All the 2-cubes are compatible. The compatibility of the CBFs is verified.
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Case studies: Ex.2

Example 2: Same scenario as
before but with U = {(u1, u2) :
|u1| ≤ 2, |u2| ≤ 2}.

-3 -2 -1 0 1 2 3
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-1

0

1

2

3

An incompatible state xin = (−1.5,−1.25) is found, at which c(xin) = −0.36.
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Case studies: Ex. 3

Example 3: Same scenario as Ex. 1 but a lower bound r = 0.016
is incorporated in Algorithm 2.

CompatibilityChecking terminates after 2 iterations and gives a result that
the multiple CBFs are at most robustly compatible with a robustness level
η = 0.6464. This is validated by, for example, considering that
c(−1.5,−1.25) = 0.5.
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Future directions

1 How to determine the extended class K functions that
mitigate the possible incompatibility and/or increase the
robustness level;

2 How to incorporate the compatibility as a constraint with the
online QP to ensure recursive feasibility.
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