Compatibility checking of multiple CBFs for input constrained systems

Xiao Tan and Dimos V. Dimarogonas

Division of Decision and Control Systems School of Electrical Engineering and Computer Science KTH Royal Institute of Technology, Sweden

IEEE-CDC 2022

• Consider a control-affine system

$$
\dot{\boldsymbol{x}}=\mathfrak{f}(\boldsymbol{x})+\mathfrak{g}(\boldsymbol{x})\boldsymbol{u},\boldsymbol{u}\in\mathbb{U}.
$$

• Multiple state constraints \Rightarrow $C = \{x : h_i(x) \geq 0, i \in \mathcal{I}\}.$

• Consider a control-affine system

$$
\dot{\boldsymbol{x}}=\mathfrak{f}(\boldsymbol{x})+\mathfrak{g}(\boldsymbol{x})\boldsymbol{u},\boldsymbol{u}\in\mathbb{U}.
$$

- Multiple state constraints \Rightarrow $C = \{x : h_i(x) \geq 0, i \in \mathcal{I}\}.$
- Recall the CBF-based controller with one CBF $h_i(x)$

$$
\boldsymbol{u}(\boldsymbol{x}) = \arg\min_{\boldsymbol{v}\in\mathbb{U}} \|\boldsymbol{v} - \boldsymbol{u}_{nom}(\boldsymbol{x})\|
$$

s.t. $L_{\boldsymbol{f}}h_i(\boldsymbol{x}) + L_{\boldsymbol{g}}h_i(\boldsymbol{x})\boldsymbol{v} + \alpha_i(h_i(\boldsymbol{x})) \ge 0$ (1)

• Consider a control-affine system

$$
\dot{\boldsymbol{x}}=\mathfrak{f}(\boldsymbol{x})+\mathfrak{g}(\boldsymbol{x})\boldsymbol{u},\boldsymbol{u}\in\mathbb{U}.
$$

- Multiple state constraints \Rightarrow $\mathcal{C} = \{ \boldsymbol{x} : h_i(\boldsymbol{x}) \geq 0, i \in \mathcal{I} \}.$
- Recall the CBF-based controller with one CBF $h_i(x)$

$$
\boldsymbol{u}(\boldsymbol{x}) = \arg\min_{\boldsymbol{v}\in\mathbb{U}} \|\boldsymbol{v} - \boldsymbol{u}_{nom}(\boldsymbol{x})\|
$$

s.t. $L_{\boldsymbol{f}}h_i(\boldsymbol{x}) + L_{\boldsymbol{g}}h_i(\boldsymbol{x})\boldsymbol{v} + \alpha_i(h_i(\boldsymbol{x})) \ge 0$ (1)

• The CBF-based controller with multiple CBFs

$$
\boldsymbol{u}(\boldsymbol{x}) = \arg\min_{\boldsymbol{v}\in\mathbb{U}} \|\boldsymbol{v} - \boldsymbol{u}_{nom}(\boldsymbol{x})\|
$$

s.t. $L_{\boldsymbol{f}}h_i(\boldsymbol{x}) + L_{\boldsymbol{g}}h_i(\boldsymbol{x})\boldsymbol{v} + \alpha_i(h_i(\boldsymbol{x})) \geq 0, \forall i \in \mathcal{I}.$ (2)

• Consider a control-affine system

$$
\dot{\boldsymbol{x}}=\mathfrak{f}(\boldsymbol{x})+\mathfrak{g}(\boldsymbol{x})\boldsymbol{u},\boldsymbol{u}\in\mathbb{U}.
$$

- Multiple state constraints \Rightarrow $\mathcal{C} = \{ \boldsymbol{x} : h_i(\boldsymbol{x}) \geq 0, i \in \mathcal{I} \}.$
- Recall the CBF-based controller with one CBF $h_i(x)$

$$
\boldsymbol{u}(\boldsymbol{x}) = \arg\min_{\boldsymbol{v}\in\mathbb{U}} \|\boldsymbol{v} - \boldsymbol{u}_{nom}(\boldsymbol{x})\|
$$

s.t. $L_{\boldsymbol{f}}h_i(\boldsymbol{x}) + L_{\boldsymbol{g}}h_i(\boldsymbol{x})\boldsymbol{v} + \alpha_i(h_i(\boldsymbol{x})) \ge 0$ (1)

• The CBF-based controller with multiple CBFs

$$
\boldsymbol{u}(\boldsymbol{x}) = \arg\min_{\boldsymbol{v}\in\mathbb{U}} \|\boldsymbol{v} - \boldsymbol{u}_{nom}(\boldsymbol{x})\|
$$

s.t. $L_{\boldsymbol{\mathsf{f}}}h_i(\boldsymbol{x}) + L_{\boldsymbol{\mathsf{g}}}h_i(\boldsymbol{x})\boldsymbol{v} + \alpha_i(h_i(\boldsymbol{x})) \geq 0, \forall i \in \mathcal{I}.$ (2)

 \bullet [\(2\)](#page-1-0) is feasible for all $x \in \mathcal{D} \supseteq \mathcal{C} \Leftrightarrow h_i(x), i \in \mathcal{I}$ are compatible.

In case of perturbations, we define $h_i(\boldsymbol{x}), i \in \mathcal{I}$ are *robustly compatible* with robustness level $\eta > 0$ if $\forall x \in \mathcal{D}$,

$$
\exists \boldsymbol{u} \in \mathbb{U}, \ L_{\mathfrak{f}} h_i(\boldsymbol{x}) + L_{\mathfrak{g}} h_i(\boldsymbol{x}) \boldsymbol{u} + \alpha_i(h_i(\boldsymbol{x})) \geq \eta, \forall i \in \mathcal{I}.
$$
 (3)

In this work, we propose an algorithmic solution to verify or falsify the hypothesis that $h_i(x)$, $i \in \mathcal{I}$ are (robustly) compatible. This algorithm will run once and offline before online implementation.

Problem statement

For notational brevity, given $h_i(x), \alpha_i(\cdot)$ and the system dynamics, we denote

$$
A(\boldsymbol{x}) := \begin{pmatrix} L_{\mathfrak{g}}h_1(\boldsymbol{x}) \\ L_{\mathfrak{g}}h_2(\boldsymbol{x}) \\ \dots \\ L_{\mathfrak{g}}h_N(\boldsymbol{x}) \end{pmatrix}, b(\boldsymbol{x}) := \begin{pmatrix} L_{\mathfrak{f}}h_1(\boldsymbol{x}) + \alpha_1(h_1(\boldsymbol{x})) \\ L_{\mathfrak{f}}h_2(\boldsymbol{x}) + \alpha_2(h_2(\boldsymbol{x})) \\ \dots \\ L_{\mathfrak{f}}h_N(\boldsymbol{x}) + \alpha_N(h_N(\boldsymbol{x})) \end{pmatrix}
$$

The problem is thus to verify whether

$$
\sup_{\boldsymbol{u}\in\mathbb{U}}A(\boldsymbol{x})\boldsymbol{u}+b(\boldsymbol{x})\ge{\bf 0},\forall\boldsymbol{x}\in\mathcal{D}.\tag{4}
$$

for compatibility, and whether

$$
\sup_{\boldsymbol{u}\in\mathbb{U}}A(\boldsymbol{x})\boldsymbol{u}+b(\boldsymbol{x})\geq\eta\mathbf{1},\forall\boldsymbol{x}\in\mathcal{D}.\tag{5}
$$

for robust compatibility with robustness level $\eta > 0$.

.

Problem statement

For notational brevity, given $h_i(x), \alpha_i(\cdot)$ and the system dynamics, we denote

$$
A(\boldsymbol{x}) := \begin{pmatrix} L_{\mathfrak{g}}h_1(\boldsymbol{x}) \\ L_{\mathfrak{g}}h_2(\boldsymbol{x}) \\ \dots \\ L_{\mathfrak{g}}h_N(\boldsymbol{x}) \end{pmatrix}, b(\boldsymbol{x}) := \begin{pmatrix} L_{\mathfrak{f}}h_1(\boldsymbol{x}) + \alpha_1(h_1(\boldsymbol{x})) \\ L_{\mathfrak{f}}h_2(\boldsymbol{x}) + \alpha_2(h_2(\boldsymbol{x})) \\ \dots \\ L_{\mathfrak{f}}h_N(\boldsymbol{x}) + \alpha_N(h_N(\boldsymbol{x})) \end{pmatrix}
$$

The problem is thus to verify whether

$$
\sup_{\boldsymbol{u}\in\mathbb{U}}A(\boldsymbol{x})\boldsymbol{u}+b(\boldsymbol{x})\ge{\bf 0},\forall\boldsymbol{x}\in\mathcal{D}.\tag{4}
$$

for compatibility, and whether

$$
\sup_{\boldsymbol{u}\in\mathbb{U}}A(\boldsymbol{x})\boldsymbol{u}+b(\boldsymbol{x})\geq\eta\mathbf{1},\forall\boldsymbol{x}\in\mathcal{D}.\tag{5}
$$

for robust compatibility with robustness level $\eta > 0$. For simplicity, we assume 1) C is compact and 2) U is convex.

.

Proposed scheme: Overview

Sampling with *n*-cubes

$$
B(\boldsymbol{x},r)=\{\boldsymbol{y}\in\mathbb{R}^n:\boldsymbol{y}=\boldsymbol{x}+\sum_i k_i r \boldsymbol{e}_i, \forall k_i\in[-1/2,1/2]\}.
$$

Grid sampling e2 − r/2, pmax en + r₁ we then collect all the points former set in view of the definition of . The latter set inclusions can be straightforwardly set in \mathcal{S}

The following holds:

- $\bf 1)$ G , from Algorithm 1, is of finite cardinality, and
- \mathcal{S} ≤ ∪ $_{p \in P}$ *B*(p, r), where *P* is the set of sampling points.

Verification algorithm: Lipschitz properties

 \blacktriangleright For any $x \in \text{Bound}(\mathcal{C})$, define

$$
c(\boldsymbol{x}) = \max_{\boldsymbol{u},t} t
$$

s.t. $A(\boldsymbol{x})\boldsymbol{u} + b(\boldsymbol{x}) \ge t\mathbf{1}_N$,
 $\boldsymbol{u} \in \mathbb{U}$. (6)

- convex optimization; $c(x)$: largest robustness level at x .
- \blacktriangleright Recall $A(\boldsymbol{x}), b(\boldsymbol{x})$ are Lipschitz functions, let the respective Lipschitz constants in Bound(C) w.r.t. the l_{∞} norm as $L_{A,\infty}, L_{b,\infty}$.

Verification algorithm: Lipschitz properties

 \blacktriangleright For any $x \in \text{Bound}(\mathcal{C})$, define

$$
c(\boldsymbol{x}) = \max_{\boldsymbol{u},t} t
$$

s.t. $A(\boldsymbol{x})\boldsymbol{u} + b(\boldsymbol{x}) \ge t\mathbf{1}_N$,
 $\boldsymbol{u} \in \mathbb{U}$. (6)

- convex optimization; $c(x)$: largest robustness level at x .
- \blacktriangleright Recall $A(\boldsymbol{x}), b(\boldsymbol{x})$ are Lipschitz functions, let the respective Lipschitz constants in Bound(C) w.r.t. the l_{∞} norm as $L_{A,\infty}, L_{b,\infty}$.
- ► Given any $x \in \text{Bound}(\mathcal{C})$, $c(x) > 0$, then for all $x' \in B(x, \rho(x))$ \cap Bound (\mathcal{C}) , $\sup_{\bm{v} \in \mathbb{U}} A(\bm{x}')\bm{v} + b(\bm{x}') \geq \bm{0}$ holds with

$$
\rho(\boldsymbol{x}) = \frac{2c(\boldsymbol{x})}{L_{A,\infty} \|\boldsymbol{u}^\star(\boldsymbol{x})\|_\infty + L_{b,\infty}},\tag{7}
$$

where $u^*(x)$ is the optimal solution to [\(6\)](#page-10-0) at x .

Verification algorithm

Algorithm 2 CompatibilityChecking

Require: $h_i(x), \alpha_i(\cdot)$, initial size r_0 , decaying factor λ 1: Initialization: 2: $k = 0$, obtain C , $G_0 \leftarrow \text{GS}(\mathcal{C}, r_0)$, $G_1 = \emptyset$. 3: while $G_k \neq \emptyset$ do
4. for each (x, r) 4: for each $(x, r) \in G_k$ do
5: $c \leftarrow c(x), \rho \leftarrow \rho(x)$. 5: $c \leftarrow c(\mathbf{x}), \ \rho \leftarrow \rho(\mathbf{x}).$
6: **if** $c < 0$ **then** \triangleright **F***c* if $c < 0$ then \triangleright Found an incompatible state; 7: return False. 8: **else if** $\rho \ge r$ **then** \triangleright Compatibility checked;
9: **e** remove (x, r) from G_t . remove (x, r) from G_k .
 Place 10: **else** \triangleright Compatibility partially checked; 11: remove (\boldsymbol{x}, r) from G_k , $r' \leftarrow \lambda r$. 12: $G_{k+1} \leftarrow G_{k+1} \cup \text{GS}(B(\boldsymbol{x}, r) \setminus B(\boldsymbol{x}, \rho), r').$ 13: end if 14: end for 15: $k = k + 1, G_{k+2} = \emptyset$. 16: end while 17: return True.

*GS stands for GridSampling given in Algorithm 1.

Step Serification guarantees propertification guar

Theorem 1. *Given* $h_i(x), \alpha_i(\cdot)$ *with* $i \in \mathcal{I}$ *, an initial lattice size* $r_0 > 0$ *and* $0 < \lambda < 1$ *, we have:*

- *1) If Algorithm 2 terminates, it gives verification or falsification on the CBF compatibility;*
- 2) if the CBFs $h_i(x)$ are robustly compatible with ro*bustness level* $\eta > 0$ *in* Bound(*C*), then Algorithm 2 *terminates in finite steps.*
- *3) If a lower bound of the lattice size* r *is incorporated, i.e., Algorithm 2 terminates if* $r < r$ *in Line 4, then Algorithm 2 terminates in finite steps and gives one of the following three results:*
	- i. $h_i(\boldsymbol{x}), i \in \mathcal{I}$ are compatible;
	- ii. $h_i(\mathbf{x}), i \in \mathcal{I}$ are incompatible;
	- iii. $h_i(\mathbf{x})$, $i \in \mathcal{I}$ are not robustly compatible with robust *level greater than*

$$
\eta' = \lambda^{-1} \underline{r} (\max_{\mathbf{u} \in \mathbb{U}} L_{A,\infty} ||\mathbf{u}||_{\infty} + L_{b,\infty})/2.
$$

Some discussions

 \blacktriangleright Computational concerns: exponential growth of $\#$ of *n*-cubes

- check only around the safety boundary;
- process *n*−cubes in parallel.
- \blacktriangleright Generalization to a time-varying setting
	- \bullet Let $\tilde{x}:=(\bm{x},t)$. Then, $\dot{\tilde{\bm{x}}}=\left(\begin{smallmatrix} \mathfrak{f}(\tilde{\bm{x}}) \ 1 \end{smallmatrix}\right)+\left(\begin{smallmatrix} \mathfrak{g}(\tilde{\bm{x}}) \ \mathbf{0} \end{smallmatrix}\right)\bm{u}$ and $\tilde{\mathcal{C}} = {\{\tilde{\bm{x}} \in \mathbb{R}^{n+1} : h_i(\tilde{\bm{x}}) \geq 0, \forall i \in \mathcal{I}\}}.$
	- Only a bounded time interval can be considered.
- \blacktriangleright Alternative grid sampling methods:
	- \bullet *n*-spheres $B_S(\boldsymbol{x},r) = \{\boldsymbol{y} \in \mathbb{R}^n : \|\boldsymbol{y} \boldsymbol{x}\| \leq r\}$
	- However, generating *n*-spheres with a small overlapping ratio is difficult in high-dimensional spaces.
- \triangleright Other improvements
	- more precise *LA,*[∞]*, Lb,*[∞];
	- updated lattice size using $r' \leftarrow \min(\rho, \lambda r)$

Example 1: Consider a $2 - D$ system with $x = (x_1, x_2)$, $u = (u_1, u_2)$, dynamics

$$
\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \underbrace{\begin{pmatrix} x_1 + x_2 \\ -x_1^2/2 \end{pmatrix}}_{\mathfrak{f}(x)} + \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{\mathfrak{g}(x)} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix},
$$

and $\mathbb{U} = \{(u_1, u_2) : |u_1| \leq 3, |u_2| \leq 3\}$. The two CBF candidates are

$$
h_1(\boldsymbol{x}) = \boldsymbol{x}^\top Q \boldsymbol{x} - 1
$$

$$
h_2(\boldsymbol{x}) = 2 - \boldsymbol{x}^\top Q \boldsymbol{x}
$$

where $Q = (\begin{smallmatrix} 0.5 & 0.1 \ 0.1 & 0.3 \end{smallmatrix})$. $\mathcal{C} = \{\bm{x}: h_i(\bm{x}) \geq 0, i = 1,2\}$. The extended class K functions are chosen as $\alpha_1(v) = v, \alpha_2(v) = v, v \in \mathbb{R}$.

All the 2-cubes are compatible. The compatibility of the CBFs is verified.

An incompatible state $x_{in} = (-1.5, -1.25)$ is found, at which $c(x_{in}) = -0.36$.

Example 3: Same scenario as Ex. 1 but a lower bound $r = 0.016$ is incorporated in Algorithm 2.

CompatibilityChecking terminates after 2 iterations and gives a result that the multiple CBFs are at most robustly compatible with a robustness level $\eta = 0.6464$. This is validated by, for example, considering that $c(-1.5, -1.25) = 0.5.$

Future directions

- **1** How to determine the extended class K functions that mitigate the possible incompatibility and/or increase the robustness level;
- **2** How to incorporate the compatibility as a constraint with the online QP to ensure recursive feasibility.