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Preliminary

e Consider a control-affine system
z=f(x)+ g(x)u,ucU.

e Multiple state constraints = C = {x : h;(x) > 0,i € Z}.
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Preliminary

Consider a control-affine system
z=f(x)+ g(x)u,ucU.

Multiple state constraints = C = {x : h;(x) > 0,i € Z}.
Recall the CBF-based controller with one CBF h;(x)

w(@) = argmin [[v — unom ()|

(1)
s.t. Lihi(x) + Lghi(x)v + a;(hi(x)) > 0
The CBF-based controller with multiple CBFs
u(x) = argmin [|[v — Upom (@)]|
vel (2)

s.t. thz(a:) + Lghl(a:)'u + az(hl(ac)) >0,Viel.

(2) is feasible for all x € D D C< hy(x), 1 € T are compatible.
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Preliminary

In case of perturbations, we define h;(x),i € Z are robustly
compatible with robustness level n > 0 if Va € D,

In this work, we propose an algorithmic solution to verify or falsify
the hypothesis that h;(x),7 € Z are (robustly) compatible. This
algorithm will run once and offline before online implementation.
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Problem statement

For notational brevity, given h;(x), «;(-) and the system dynamics,
we denote

Lghl (m) thl (113) + a1 (hl (ZB))
Alz) = Lgf'l'z‘(w) b(a) Lihs(x) Ji'Oéz(hQ(iL‘))
Lghn(z) Lihn () + an(hn(z))

The problem is thus to verify whether

sup A(x)u + b(x) > 0,Vx € D. (4)
uclU

for compatibility, and whether

sup A(x)u + b(x) > nl,Va € D. (5)
ueclU

for robust compatibility with robustness level > 0.
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Problem statement
For notational brevity, given h;(x), «;(-) and the system dynamics,
we denote

Lghy(x) Lihi(x) + a1 (hi(x))
Alz) = Lghs(x) () Liho(z) + az(ha(z))
Lahn (@) Lihn (@) + a (hx (@)
The problem is thus to verify whether
sgg A(x)u +b(x) > 0,Vx € D. (4)

for compatibility, and whether

sup A(x)u + b(x) > nl,Va € D. (5)
uclU
for robust compatibility with robustness level > 0.
For simplicity, we assume 1) C is compact and 2) U is convex.
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Proposed scheme: Overview

C Partitioning 2 Probing >0
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Refining Py iy R
c(x) >0,p(x) >r clx) >0,plx)<r c(x) <0
Verified To be refined Falsified

Sampling with n-cubes

B(x,r)={yeR":y=x+ Y kire;,Vk; € [-1/2,1/2]}.

4/14



Grid sampling

3 . : ; ; —
n - ——— 3 e
Algorithm 1 GridSampling s . 0] Pnd(S)
Require: Compact set S C R”, lattice size r 2r 5 SRR ol ,I:Ii—cubcs
1: Calculate pP™ = mingcs e/ x, PP = maxgese; T AN - - - - - L
. E v 1+
forie{1,2,...,n}.
2: Construct a  regular lattice Plattice around 2ol
min | jmax jmin | mik min g jmax 3
(/)gl 2Pgl i Pey 2p22 s Pey J;ﬁen ) with size 7.
3: Construct Peang = Platice N [pe)" — 7/2,p8 +7/2] x 1}
[ — 1 /2, po 41 [2] X ... X [pg‘:“ —r/2, pr*4r/2].
4 P={p€ Pua: B(p,r) NS #0},G=Px{r} 27 SRR
ssreturnG. DTl e
3 ; ; ; : ;
3 2 1 1 2

The following holds:
1) G, from Algorithm 1, is of finite cardinality, and
2) S C UpepB(p,r), where P is the set of sampling points.
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Verification algorithm: Lipschitz properties
» For any € Bound(C), define

c(x) = maxt

u,t

sit. A(x)u + b(x) > tly, (6)
u e U
e convex optimization; ¢(x): largest robustness level at x.

» Recall A(z),b(x) are Lipschitz functions, let the respective
Lipschitz constants in Bound(C) w.r.t. the lo norm as L4 o0, Lp co-
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Verification algorithm: Lipschitz properties
» For any € Bound(C), define

c(x) = maxt

u,t

sit. A(x)u + b(x) > tly, (6)
u e U
e convex optimization; ¢(x): largest robustness level at x.

» Recall A(z),b(x) are Lipschitz functions, let the respective
Lipschitz constants in Bound(C) w.r.t. the lo norm as L4 o0, Lp co-

» Given any & € Bound(C), ¢(x) > 0, then for all ' € B(x, p(x))
NBound(C), sup, ey A(z')v + b(xz’) > 0 holds with
2¢(x)

p(w) = LA,OCHU*(:B)HOO +Lb,oo7 (7)

where u*(x) is the optimal solution to (6) at «.
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Verification algorithm

Algorithm 2 CompatibilityChecking

Require: h;(x), a;(-), initial size 7o, decaying factor A
1: Initialization:

2: k =0, obtain C, Go + GS(C,719), G1 = 0.

3: while G, # 0 do

4 for each (x,r) € G, do

5 ¢+ c(x), p + p(x).

6: if ¢ < 0 then > Found an incompatible state;
7 return False.

8: else if p > r then > Compatibility checked;
9: remove (z,r) from Gy.

10: else > Compatibility partially checked;
11: remove (z,r) from Gy, 1’ < Ar.

12: Grs1 < Gr41 UGS(B(z,r) \ Bz, p),r’).
13: end if

14: end for

15: k=k+17Gk+2=®.
16: end while
17: return True.

*GS stands for GridSampling given in Algorithm 1.
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Verification guarantees

Theorem 1. Given h;(x),c;(-) with i € Z, an initial lattice
size rg > 0 and 0 < XA < 1, we have:

1) If Algorithm 2 terminates, it gives verification or falsi-
fication on the CBF compatibility;

2) if the CBFs h;(x) are robustly compatible with ro-
bustness level n > 0 in Bound(C), then Algorithm 2
terminates in finite steps.

3) If a lower bound of the lattice size r is incorporated,
i.e., Algorithm 2 terminates if r < r in Line 4, then
Algorithm 2 terminates in finite steps and gives one of
the following three results:

i. hi(x),i € T are compatible;
ii. hi(x),i €L are incompatible;
iii. h;(x),i € T are not robustly compatible with robust
level greater than

n = A_lﬁ(max L 4 olltt]| oot Lb,00)/2.
uel
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Some discussions

» Computational concerns: exponential growth of # of n-cubes
® check only around the safety boundary;
® process n—cubes in parallel.
» Generalization to a time-varying setting
® Let 7 :=(x,t). Then, = ("®) 4 (9@ )y and
C={zeR":h(x)>0,Viecl}
® Only a bounded time interval can be considered.

» Alternative grid sampling methods:

® n-spheres Bg(x,r) ={y e R": |ly — x| < r}
® However, generating n-spheres with a small overlapping ratio is
difficult in high-dimensional spaces.
» Other improvements

® more precise L A o0, Lp co;
® updated lattice size using ' < min(p, \r)
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Case studies: Ex.1

Example 1: Consider a 2 — D system with & = (x1, x2),
u = (u1,ug), dynamics

I 1+ T2 n 1 0 U1
i:g —£E1/2 0 1 u9 ’
—_—

f(z) 8(z)

and U = {(uy,u2) : |ui| < 3,|ug| < 3}. The two CBF candidates
are

hi(z) =2 Qx —1
ho(x) =2 — ' Qx

where Q = (33 91). C ={x: hi(x) > 0,4 =1,2}. The extended
class KC functions are chosen as oq(v) ag(v) =v,v€R.
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Case studies: Ex.1

Compatible 2-cubes | | Compatible 2-cubes.
To-bo-refined 2-cubes

(a) First iteration, r = 0.25. (b) Second iteration, r = 0.0625. (c) Third iteration, » = 0.0156.

All the 2-cubes are compatible. The compatibility of the CBFs is verified.
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Case studies: Ex.2

To-be-refined 2-cubes
I 1ncompatible 2-cubes

Example 2: Same scenario as
before but with U = {(uy,u2) : ¢ of
lui| <2, ug| < 2}.

An incompatible state x;, = (—1.5, —1.25) is found, at which ¢(xz;,) = —0.36.
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Case studies: Ex. 3

Example 3: Same scenario as Ex. 1 but a lower bound r = 0.016
is incorporated in Algorithm 2.

CompatibilityChecking terminates after 2 iterations and gives a result that
the multiple CBFs are at most robustly compatible with a robustness level

n = 0.6464. This is validated by, for example, considering that
c¢(—1.5,—-1.25) = 0.5.
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Future directions

1 How to determine the extended class K functions that
mitigate the possible incompatibility and/or increase the
robustness level;

2 How to incorporate the compatibility as a constraint with the
online QP to ensure recursive feasibility.
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