Smooth Feedback Construction Over Spherical Polytopes

Xiao Tan¹, Soulaimane Berkane² and Dimos V. Dimarogonas¹

- 1. Division of Control and Decision Systems, KTH Royal Institute of Technology, Sweden
- 2. Département d'informatique et d'ingénierie, Université du Québec en Outaouais, Canada

European Control Conference 2020

May 14, 2020

Systems evolving on a unit sphere

• Configuration space $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : x^\top x = 1\}$

Systems evolving on a unit sphere

• Configuration space $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : x^\top x = 1\}$

Spherical pendulum

Reduced attitude model

Systems evolving on a unit sphere

• Configuration space $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : x^\top x = 1\}$

Spherical pendulum

Reduced attitude model

 \bullet How to control the system state only in part of the sphere region ?

- Control of spherical pendulum and reduced attitude model;
 - F. Bullo, R. Murray, A. Sarti et al., *Control on the sphere and reduced attitude stabilization*, in Third IFAC Symposium on Nonlinear Control Systems Design, 1995.
 - A. S. Shiriaev, H. Ludvigsen, and O. Egeland, *Swinging up the spherical pendulum via stabilization of its first integrals*, Automatica, 2004.
 - M. Ramp and E. Papadopoulos, Attitude and angular velocity tracking for a rigid body using geometric methods on the two-sphere, in 2015 European Control Conference, 2015.

- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
 - U. Lee and M. Mesbahi, *Feedback control for spacecraft reorientation under attitude constraints via convex potentials*, IEEE Transactions on Aerospace and Electronic Systems, 2014.
 - S. Kulumani and T. Lee, *Constrained geometric attitude control on SO(3)*. International Journal of Control, 2017.

- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
- Search-based method for full attitude model;
 - E Frazzoli, MA Dahleh, E Feron, and R Kornfeld, *A randomized attitude slew planning algorithm for autonomous spacecraft*, AIAA Guidance, Navigation, and Control Conference, 2001.
 - H. C. Kjellberg and E. G. Lightsey, *Discretized quaternion constrained attitude pathfinding*, Journal of Guidance, Control, and Dynamics, 2015.
 - X. Tan, S. Berkane, and D. V. Dimarogonas, *Constrained attitude maneuvers on SO(3): Rotation space sampling, planning and lowlevel control*, Automatica, 2020.

- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
- Search-based method for full attitude model;
- Control barrier function
 - G. Wu and K. Sreenath, *Safety-critical and constrained geometric control synthesis using control lyapunov and control barrier functions for systems evolving on manifolds,* American Control Conference, 2015.

- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
- Search-based method for full attitude model;
- Control barrier function
- Our contribution
 - propose a spherical polytope description and decomposition;
 - introduce the gnomonic projection that maps spherical polytopes into polytopes in $\mathbb{R}^2;$
 - the transformed dynamics is linearized to a single integrator via feedback.
 - develop a feedback control law levering with existing Euclidean navigation solutions;

A spherical polytope P in \mathbb{S}^2 is a convex subset of \mathbb{S}^2 such that 1

- P has only finitely many vertices;
- *P* is the convex hull of its vertices;
- if $x \in P$, then $-x \notin P$.

In analog, a convex polytope Q in \mathbb{R}^2 is a convex subset of \mathbb{R}^2 such that

- Q has only finitely many vertices;
- *Q* is the convex hull of its vertices;

¹J. Ratcliffe, *Foundations of hyperbolic manifolds*. Springer Science, 2006.

X. Tan (xiaotan@kth.se) (KTH)

Smooth feedback construction over spherical polytopes

A spherical polytope P in \mathbb{S}^2 is a convex subset of \mathbb{S}^2 such that 1

- P has only finitely many vertices;
- P is the convex hull of its vertices;
- if $x \in P$, then $-x \notin P$.

• Every *P* lies in a hemisphere $U_a := \{ x \in \mathbb{S}^2 : a^T x > 0 \}$ for some vector $a \in \mathbb{S}^2$.

¹J. Ratcliffe, *Foundations of hyperbolic manifolds*. Springer Science, 2006. X. Tan (xiaotan@kth.se) (KTH) Smooth feedback construction over spherical polytopes

Definition 1

A spherical polytope partitioning is a finite collection of spherical polytopes $\mathcal{P} = \{P_i\}$, $i = 1, 2, \dots, n$, such that

• Int $(P_i) \cap Int(P_j) = \emptyset$ for any distinct $P_i, P_j \in \mathcal{P}$;

2
$$\cup_{i\in\{1,\cdots,n\}}P_i=\mathbb{S}^2$$
 .

Definition 1

A spherical polytope partitioning is a finite collection of spherical polytopes $\mathcal{P} = \{P_i\}$, $i = 1, 2, \cdots, n$, such that

• Int $(P_i) \cap Int(P_j) = \emptyset$ for any distinct $P_i, P_j \in \mathcal{P}$;

2
$$\cup_{i\in\{1,\cdots,n\}}P_i=\mathbb{S}^2$$
 .

Example:

Problem formulation

The kinematic model evolving on the sphere is

$$\dot{\mathbf{x}} = \Pi(\mathbf{x})\mathbf{u}$$
 (1)

where $x \in \mathbb{S}^2$ is the state, $u \in \mathbb{R}^m$ is the control input, $\Pi(x) : \mathbb{R}^m \to \mathsf{T}_x \mathbb{S}^2$ is a smooth matrix-valued function.

Problem 1 (Control over spherical polytopes)

Given a spherical polytope partitioning \mathcal{P} . Let $\mathcal{P}' \subset \mathcal{P}$, $M := \bigcup_i P_i, \forall P_i \in \mathcal{P}'$, and $x_g \in M$. Assume that M is connected. Design a control input u such that

- all integral curves are smooth;
- **2** for all initial states $\mathbf{x}(0) \in M$, $\mathbf{x}(t) \in M$ for all $t \ge 0$;
- **3** x(t) reaches x_g asymptotically.

Decompose-planning-control formulation

Decompose-planning-control formulation:

Decompose-planning-control formulation

Decompose-planning-control formulation:

The missing stone

 \Rightarrow control over the planned spherical polytope transitions.

X. Tan (xiaotan@kth.se) (KTH)

Smooth feedback construction over spherical polytopes

Plenty of results exist!

Plenty of results exist!

Gnomonic projection

Gnomonic projection.

Gnomonic projection

Gnomonic projection.

The gnomonic projection for $\boldsymbol{a} \in \mathbb{S}^2$, is a mapping $\phi_{\boldsymbol{a}} : \boldsymbol{x} \in U_{\boldsymbol{a}} \mapsto \boldsymbol{\xi} \in \mathbb{R}^2$

$$\phi_{\boldsymbol{a}}(\boldsymbol{x}) := J_2 R_{\boldsymbol{a}} \frac{\boldsymbol{x}}{\boldsymbol{a}^\top \boldsymbol{x}}, \qquad (2)$$

where $J_2 := \begin{bmatrix} I_2 & \mathbf{0}_{2 \times 1} \end{bmatrix}$, R_a is a constant rotation matrix given a.

Gnomonic projection

Gnomonic projection.

The gnomonic projection for $\boldsymbol{a} \in \mathbb{S}^2$, is a mapping $\phi_{\boldsymbol{a}} : \boldsymbol{x} \in U_{\boldsymbol{a}} \mapsto \boldsymbol{\xi} \in \mathbb{R}^2$

$$\phi_{\boldsymbol{a}}(\boldsymbol{x}) := J_2 R_{\boldsymbol{a}} \frac{\boldsymbol{x}}{\boldsymbol{a}^\top \boldsymbol{x}}, \qquad (2)$$

where $J_2 := \begin{bmatrix} I_2 & \mathbf{0}_{2 \times 1} \end{bmatrix}$, R_a is a constant rotation matrix given a.

• ϕ_a is a homeomorphism. (U_a, ϕ_a) is a chart for \mathbb{S}^2 .

Proposition 1

The collection of charts $\mathcal{A} = \{(U_a, \phi_a)\}_{a \in \mathbb{S}^2}$ is a smooth atlas for \mathbb{S}^2 .

Proposition 2

For any $x_1, x_2 \in U_{e_3}$, the gnomonic projection of seg (x_1, x_2) forms a line segment in \mathbb{R}^2 .

Proposition 1

The collection of charts $\mathcal{A} = \{(U_a, \phi_a)\}_{a \in \mathbb{S}^2}$ is a smooth atlas for \mathbb{S}^2 .

Proposition 2

For any $x_1, x_2 \in U_{e_3}$, the gnomonic projection of seg (x_1, x_2) forms a line segment in \mathbb{R}^2 .

Proposition 1

Proposition 3

The collection of charts $\mathcal{A} = \{(U_a, \phi_a)\}_{a \in \mathbb{S}^2}$ is a smooth atlas for \mathbb{S}^2 . Given a spherical polytope $P \subset U_{e_3}$, the gnomonic projection of the spherical polytope is a Euclidean polytope in \mathbb{R}^2 .

Plenty of results exist!

Recall the kinematic model is

 $\dot{x} = \Pi(x)u$.

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\operatorname{Im}(\Pi(x)) = \mathsf{T}_x \mathbb{S}^2$.

Recall the kinematic model is

 $\dot{x} = \Pi(x)u$.

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\operatorname{Im}(\Pi(x)) = \mathsf{T}_x \mathbb{S}^2$.

Consider the change of state variable $\boldsymbol{\xi} = \phi_{\boldsymbol{a}}(\boldsymbol{x}), \boldsymbol{x} \in U_{\boldsymbol{a}}.$

Recall the kinematic model is

 $\dot{\boldsymbol{x}} = \Pi(\boldsymbol{x})\boldsymbol{u}.$

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\operatorname{Im}(\Pi(x)) = \mathsf{T}_x \mathbb{S}^2$.

Consider the change of state variable $\boldsymbol{\xi} = \phi_{\boldsymbol{a}}(\boldsymbol{x}), \boldsymbol{x} \in U_{\boldsymbol{a}}$. The transformed dynamics of $\boldsymbol{\xi}$ is given by

$$\dot{\boldsymbol{\xi}} = \nabla \phi_{\boldsymbol{a}}(\boldsymbol{x}) \dot{\boldsymbol{x}} = \nabla \phi_{\boldsymbol{a}}(\boldsymbol{x}) \Pi(\boldsymbol{x}) \boldsymbol{u} := \Theta_{\boldsymbol{a}}(\boldsymbol{x}) \boldsymbol{u}$$
(3)

where $\nabla \phi_{\boldsymbol{a}}(\boldsymbol{x})$ denotes the Jacobian matrix.

Recall the kinematic model is

 $\dot{\boldsymbol{x}} = \Pi(\boldsymbol{x})\boldsymbol{u}.$

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\operatorname{Im}(\Pi(x)) = \mathsf{T}_x \mathbb{S}^2$.

Consider the change of state variable $\boldsymbol{\xi} = \phi_{\boldsymbol{a}}(\boldsymbol{x}), \boldsymbol{x} \in U_{\boldsymbol{a}}$. The transformed dynamics of $\boldsymbol{\xi}$ is given by

$$\dot{\boldsymbol{\xi}} = \nabla \phi_{\boldsymbol{a}}(\boldsymbol{x}) \dot{\boldsymbol{x}} = \nabla \phi_{\boldsymbol{a}}(\boldsymbol{x}) \Pi(\boldsymbol{x}) \boldsymbol{u} := \Theta_{\boldsymbol{a}}(\boldsymbol{x}) \boldsymbol{u}$$
(3)

where $\nabla \phi_{\boldsymbol{a}}(\boldsymbol{x})$ denotes the Jacobian matrix.

Lemma 1

If Assumption 1 holds, then $\Theta_a(x) \in \mathbb{R}^{2 \times m}$ has full row rank for all $x \in U_a$ and all $a \in \mathbb{S}^2$.

Proposition 4

Consider the kinematic model (1) evolving on the 2-dimensional hemisphere U_a under the following feedback control law

$$oldsymbol{\mu} = (\Theta_{oldsymbol{s}}(oldsymbol{x}))^\daggeroldsymbol{v}$$

where $\mathbf{v} \in \mathbb{R}^2$ is a virtual control input. Then, the dynamics of the new variable $\boldsymbol{\xi} = \phi_{\mathbf{a}}(\mathbf{x})$, evolving in the Euclidean space \mathbb{R}^2 , is

$$\dot{\boldsymbol{\xi}} = \boldsymbol{v}.$$
 (5)

(4)

Feedback law construction in one hemisphere

For spherical polytopes $\{P_i\}$ that jointly lie on one hemisphere U_a ,

Previous results on VF construction

For a polytope Q, a vector field V is constructed by smoothly blending a cell vector field V_c and a face vector field V_{f_i} , i.e.,

$$V(oldsymbol{\xi}) = \mathsf{unit}(b(oldsymbol{\xi})V_c(oldsymbol{\xi}) + (1-b(oldsymbol{\xi}))V_{f_i}(oldsymbol{\xi}))$$
 (6

for any point $\boldsymbol{\xi}$ in the region of influence of face f_i .

• The constructed vector field is smooth on Q except for the polytope vertices.

²S. R. Lindemann and S. M. LaValle, International Journal of Robotics Research, 2009.

X. Tan (xiaotan@kth.se) (KTH)

Smooth feedback construction over spherical polytopes

For spherical polytopes $\{P_i\}$ that jointly lie on one hemisphere U_a ,

$$x, P, \operatorname{seg}_{ex}/x_g \xrightarrow{\phi_a(\cdot)} \xi, Q, f_{ex}/\xi_g \xrightarrow{\operatorname{Vector field construction}} v(\xi) \xrightarrow{u = (\Theta_a(x))^{\dagger}v} u(x)$$

Analysis: From [2], any resulting integral curve s starting from $s(0) \in \bigcup_i Q_i$ is smooth, contained in $\bigcup_i Q_i$, s(t) converges to $\boldsymbol{\xi}_g$ asymptotically.

Correspondingly, any integral curve starting from $\phi_a^{-1}(s(0)) \in \bigcup_i P_i$ is smooth, contained in $\bigcup_i P_i$, and $\phi_a^{-1} \circ s(t)$ converges to x_g asymptotically.

 $^2 \text{S.}$ R. Lindemann and S. M. LaValle, International Journal of Robotics Research, 2009.

X. Tan (xiaotan@kth.se) (KTH)

Smooth feedback construction over spherical polytopes

Simulation results in one hemisphere

Feedback construction across charts

A chart transition is needed when constructing a feedback law for spherical polytopes across different charts. One example:

Feedback construction across charts

A chart transition is needed when constructing a feedback law for spherical polytopes across different charts. One example:

- for x ∈ P₁ ∪ P₂ except the region of influence of f_a in P₁, the control law is constructed as before;
- If or x in the region of influence of f_a in P₁, the control input v at $\boldsymbol{\xi} = \phi_a(\boldsymbol{x})$ is constructed as

 $oldsymbol{v} = b(oldsymbol{\xi})V_c(oldsymbol{\xi}) + (1-b(oldsymbol{\xi}))\Theta_{oldsymbol{a}}\Theta^{\dagger}_{oldsymbol{b}}V_{f_{oldsymbol{b}},2}(oldsymbol{\xi})$

where $V_{f_b,2}$ denotes the face vector field of f_b in Q_2 . The control input $\boldsymbol{u} = \Theta_{\boldsymbol{a}}(\boldsymbol{x})^{\dagger} \boldsymbol{v}$.

Simulation results across charts

• Studied a spherical-polytope-based pratitioning.

- Studied a spherical-polytope-based pratitioning.
- Gnomonic projection has nice properties that
 - it constructs a smooth altas on the 2-sphere;
 - it projects the spherical polytopes to Euclidean polytopes.

- Studied a spherical-polytope-based pratitioning.
- Gnomonic projection has nice properties that
 - it constructs a smooth altas on the 2-sphere;
 - it projects the spherical polytopes to Euclidean polytopes.
- Nonlinear kinematic dynamics can be locally transformed into a single integrator in \mathbb{R}^2 via feedback linearization.

- Studied a spherical-polytope-based pratitioning.
- Gnomonic projection has nice properties that
 - it constructs a smooth altas on the 2-sphere;
 - it projects the spherical polytopes to Euclidean polytopes.
- Nonlinear kinematic dynamics can be locally transformed into a single integrator in \mathbb{R}^2 via feedback linearization.
- Algorithms that were originally designed for Euclidean navigation now can be used on 2-spheres.

• Apply the spherical-polytope partitioning and gnomonic projection tools to under-actuated second-order dynamical systems evolving on higher dimensional spheres.

The End