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Systems evolving on a unit sphere

Configuration space S2 := {x ∈ R3 : x>x = 1}
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• How to control the system state only in part of the sphere region ?
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Related literature

Control of spherical pendulum and reduced attitude model;

Potential field method for full attitude model;

Search-based method for full attitude model;

Control barrier function

Our contribution

propose a spherical polytope description and decomposition;
introduce the gnomonic projection that maps spherical polytopes into polytopes in
R2;
the transformed dynamics is linearized to a single integrator via feedback.
develop a feedback control law levering with existing Euclidean navigation solutions;
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Spherical polytopes

A spherical polytope P in S2 is a convex
subset of S2 such that1

P has only finitely many vertices;

P is the convex hull of its vertices;

if x ∈ P , then −x /∈ P .

In analog, a convex polytope Q in R2 is a
convex subset of R2 such that

Q has only finitely many vertices;

Q is the convex hull of its vertices;

1J. Ratcliffe, Foundations of hyperbolic manifolds. Springer Science, 2006.
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A spherical polytope P in S2 is a convex
subset of S2 such that1

P has only finitely many vertices;

P is the convex hull of its vertices;

if x ∈ P , then −x /∈ P .

• Every P lies in a hemisphere Ua := {x ∈ S2 : a>x > 0} for some vector a ∈ S2.

1J. Ratcliffe, Foundations of hyperbolic manifolds. Springer Science, 2006.
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Spherical polytopes

Definition 1
A spherical polytope partitioning is a finite collection of spherical polytopes P = {Pi},
i = 1, 2, · · · , n, such that

1 Int(Pi) ∩ Int(Pj) = ∅ for any distinct Pi ,Pj ∈ P ;

2 ∪i∈{1,··· ,n}Pi = S2 .

Example:
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Problem formulation

The kinematic model evolving on the sphere is

ẋ = Π(x)u (1)

where x ∈ S2 is the state, u ∈ Rm is the control input, Π(x) : Rm → TxS2 is a smooth
matrix-valued function.

Problem 1 (Control over spherical polytopes)

Given a spherical polytope partitioning P . Let P ′ ⊂ P , M := ∪iPi ,∀Pi ∈ P ′, and
xg ∈ M . Assume that M is connected. Design a control input u such that

1 all integral curves are smooth;

2 for all initial states x(0) ∈ M , x(t) ∈ M for all t ≥ 0;

3 x(t) reaches xg asymptotically.
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Decompose-planning-control formulation

Decompose-planning-control formulation:
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The missing stone
⇒ control over the planned spherical polytope transitions.
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Proposed solution structure

spherical polytopes

nonlinear dynamics

Euclidean polytope

single integrator dynamics

Euclidean navigation problem

gnomonic projection

feedback linearization

Plenty of results exist!

planned transitions
over spherical polytopes
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Gnomonic projection

x = (x1, x2, x3)

x′ = (x1x3 ,
x2
x3
, 1)

x1
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x3
Se3

Ue3

ξ = (x1x2 ,
x2
x3
)

φe3(·)

φ−1
e3
(·)

o

Gnomonic projection.

The gnomonic projection for a ∈ S2, is a
mapping φa : x ∈ Ua 7→ ξ ∈ R2

φa(x) := J2Ra
x

a>x
, (2)

where J2 := [I2 02×1], Ra is a constant
rotation matrix given a.

• φa is a homeomorphism. (Ua, φa) is a chart for S2.
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Bridging spherical polytopes and Euclidean polytopes

x = (x1, x2, x3)

x′ = (x1x3 ,
x2
x3
, 1)
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Proposition 1

The collection of charts A = {(Ua, φa)}a∈S2

is a smooth atlas for S2.

Proposition 2
For any x1, x2 ∈ Ue3 , the gnomonic
projection of seg(x1, x2) forms a line
segment in R2.

Proposition 3
Given a spherical polytope P ⊂ Ue3 , the
gnomonic projection of the spherical
polytope is a Euclidean polytope in R2.
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Proposed solution structure
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Plenty of results exist!
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Projected dynamics in the Euclidean space

Recall the kinematic model is
ẋ = Π(x)u.

Assumption 1 (Fully actuated)

For all x ∈ S2, Im(Π(x)) = TxS2.

Consider the change of state variable ξ = φa(x), x ∈ Ua. The transformed dynamics of
ξ is given by

ξ̇ = ∇φa(x)ẋ = ∇φa(x)Π(x)u := Θa(x)u (3)

where ∇φa(x) denotes the Jacobian matrix.

Lemma 1
If Assumption 1 holds, then Θa(x) ∈ R2×m has full row rank for all x ∈ Ua and all
a ∈ S2.
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Feedback linearization

Proposition 4

Consider the kinematic model (1) evolving on the 2-dimensional hemisphere Ua under
the following feedback control law

u = (Θa(x))†v (4)

where v ∈ R2 is a virtual control input. Then, the dynamics of the new variable
ξ = φa(x), evolving in the Euclidean space R2, is

ξ̇ = v . (5)
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Feedback law construction in one hemisphere

For spherical polytopes {Pi} that jointly lie on one hemisphere Ua,

x, P, segex/xg ξ,Q, fex/ξg
Vector field construction

v(ξ) u(x)
φa(·) u = (Θa(x))†v

P2

P1

segex

φa(·)Q1

Q2
fex

x

ξ

virtual input v

control input u
u = (Θ)†v
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Previous results on VF construction

For a polytope Q, a vector field V is constructed by smoothly blending a cell vector
field Vc and a face vector field Vfi , i.e.,

V (ξ) = unit(b(ξ)Vc(ξ) + (1− b(ξ))Vfi (ξ)) (6)

for any point ξ in the region of influence of face fi .

fi
region of influence of fi

fex
p

cell vector field face vector field

fex

blending function

fi

ξg

b = 0

b = 1

• The constructed vector field is smooth on Q except for the polytope vertices.
2S. R. Lindemann and S. M. LaValle, International Journal of Robotics Research, 2009.
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Feedback law construction in one hemisphere

For spherical polytopes {Pi} that jointly lie on one hemisphere Ua,

x, P, segex/xg ξ,Q, fex/ξg
Vector field construction

v(ξ) u(x)
φa(·) u = (Θa(x))†v

Analysis: From [2], any resulting integral curve s starting from s(0) ∈ ∪iQi is smooth,
contained in ∪iQi , s(t) converges to ξg asymptotically.

Correspondingly, any integral curve starting from φ−1
a (s(0)) ∈ ∪iPi is smooth, contained

in ∪iPi , and φ−1
a ◦ s(t) converges to xg asymptotically.

2S. R. Lindemann and S. M. LaValle, International Journal of Robotics Research, 2009.
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Simulation results in one hemisphere
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Feedback construction across charts

A chart transition is needed when constructing a feedback law for spherical polytopes
across different charts. One example:

P2

P1

seg

φa(·)
φb(·)

Q1

fa
Q2

fb

1 for x ∈ P1 ∪ P2 except the region of
influence of fa in P1, the control law is
constructed as before;

2 for x in the region of influence of fa in
P1, the control input v at ξ = φa(x) is
constructed as

v = b(ξ)Vc(ξ) + (1− b(ξ))ΘaΘ†bVfb,2(ξ)

where Vfb,2 denotes the face vector field
of fb in Q2. The control input
u = Θa(x)†v .
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Simulation results across charts

From two viewpoints
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Conclusion

Studied a spherical-polytope-based pratitioning.

Gnomonic projection has nice properties that

it constructs a smooth altas on the 2−sphere;
it projects the spherical polytopes to Euclidean polytopes.

Nonlinear kinematic dynamics can be locally transformed into a single integrator in
R2 via feedback linearization.

Algorithms that were originally designed for Euclidean navigation now can be used
on 2−spheres.
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Future work

Apply the spherical-polytope partitioning and gnomonic projection tools to
under-actuated second-order dynamical systems evolving on higher dimensional
spheres.
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The End
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