Smooth Feedback Construction Over Spherical Polytopes

$\bm{\mathsf{X}}$ iao $\bm{\mathsf{T}}$ an 1 , Soulaimane Berkane 2 and Dimos V. Dimarogonas 1

- 1. Division of Control and Decision Systems, KTH Royal Institute of Technology, Sweden
- 2. Département d'informatique et d'ingénierie, Université du Québec en Outaouais, Canada

European Control Conference 2020

May 14, 2020

Systems evolving on a unit sphere

Configuration space $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : x^{\top}x = 1\}$

Systems evolving on a unit sphere

Configuration space $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : x^{\top}x = 1\}$

Spherical pendulum

Reduced attitude model

Systems evolving on a unit sphere

Configuration space $\mathbb{S}^2 := \{x \in \mathbb{R}^3 : x^{\top}x = 1\}$

Spherical pendulum

Reduced attitude model

• How to control the system state only in part of the sphere region ?

- Control of spherical pendulum and reduced attitude model;
	- F. Bullo, R. Murray, A. Sarti et al., Control on the sphere and reduced attitude stabilization, in Third IFAC Symposium on Nonlinear Control Systems Design, 1995.
	- A. S. Shiriaev, H. Ludvigsen, and O. Egeland, Swinging up the spherical pendulum via stabilization of its first integrals, Automatica, 2004.
	- M. Ramp and E. Papadopoulos, Attitude and angular velocity tracking for a rigid body using geometric methods on the two-sphere, in 2015 European Control Conference, 2015.

- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
	- U. Lee and M. Mesbahi, Feedback control for spacecraft reorientation under attitude constraints via convex potentials, IEEE Transactions on Aerospace and Electronic Systems, 2014.
	- \bullet S. Kulumani and T. Lee, *Constrained geometric attitude control on SO(3)*. International Journal of Control, 2017.

- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
- Search-based method for full attitude model;
	- E Frazzoli, MA Dahleh, E Feron, and R Kornfeld, A randomized attitude slew planning algorithm for autonomous spacecraft, AIAA Guidance, Navigation, and Control Conference, 2001.
	- H. C. Kjellberg and E. G. Lightsey, Discretized quaternion constrained attitude pathfinding, Journal of Guidance, Control, and Dynamics, 2015.
	- X. Tan, S. Berkane, and D. V. Dimarogonas, Constrained attitude maneuvers on SO(3): Rotation space sampling, planning and lowlevel control, Automatica, 2020.
- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
- Search-based method for full attitude model;
- **e** Control barrier function
	- G. Wu and K. Sreenath, Safety-critical and constrained geometric control synthesis using control lyapunov and control barrier functions for systems evolving on manifolds, American Control Conference, 2015.

- Control of spherical pendulum and reduced attitude model;
- Potential field method for full attitude model;
- Search-based method for full attitude model:
- **o** Control barrier function
- Our contribution
	- propose a spherical polytope description and decomposition;
	- introduce the gnomonic projection that maps spherical polytopes into polytopes in \mathbb{R}^2 ;
	- the transformed dynamics is linearized to a single integrator via feedback.
	- develop a feedback control law levering with existing Euclidean navigation solutions;

A spherical polytope P in \mathbb{S}^2 is a convex subset of \mathbb{S}^2 such that 1

- \bullet P has only finitely many vertices;
- \bullet P is the convex hull of its vertices:
- if $x \in P$, then $-x \notin P$.

In analog, a convex polytope Q in \mathbb{R}^2 is a convex subset of \mathbb{R}^2 such that

- Q has only finitely many vertices;
- Q is the convex hull of its vertices:

¹J. Ratcliffe, Foundations of hyperbolic manifolds. Springer Science, 2006. X. Tan (xiaotan@kth.se) (KTH) [Smooth feedback construction over spherical polytopes](#page-0-0) ECC 2020 4/23

A spherical polytope P in \mathbb{S}^2 is a convex subset of \mathbb{S}^2 such that 1

- \bullet P has only finitely many vertices;
- \bullet P is the convex hull of its vertices:
- if $x \in P$, then $-x \notin P$.

 \bullet Every P lies in a hemisphere $U_a := \{ \bm{x} \in \mathbb{S}^2 : a^\top \bm{x} > 0 \}$ for some vector $a \in \mathbb{S}^2$.

¹J. Ratcliffe, Foundations of hyperbolic manifolds. Springer Science, 2006. X. Tan (xiaotan@kth.se) (KTH) [Smooth feedback construction over spherical polytopes](#page-0-0) ECC 2020 ECC 2020 4/23

Definition 1

A spherical polytope partitioning is a finite collection of spherical polytopes $\mathcal{P} = \{P_i\}$, $i = 1, 2, \cdots, n$, such that

- \textbf{D} $\textsf{Int}(P_i) \cap \textsf{Int}(P_j) = \emptyset$ for any distinct $P_i, P_j \in \mathcal{P};$
- 2 $\cup_{i \in \{1, \cdots, n\}} P_i = \mathbb{S}^2$.

Definition 1

A spherical polytope partitioning is a finite collection of spherical polytopes $\mathcal{P} = \{P_i\}$, $i = 1, 2, \cdots, n$, such that

 \textbf{D} $\textsf{Int}(P_i) \cap \textsf{Int}(P_j) = \emptyset$ for any distinct $P_i, P_j \in \mathcal{P};$

$$
\bullet \cup_{i\in\{1,\cdots,n\}} P_i = \mathbb{S}^2.
$$

Example:

Problem formulation

The kinematic model evolving on the sphere is

$$
\dot{\mathbf{x}} = \mathsf{\Pi}(\mathbf{x})\mathbf{u} \tag{1}
$$

where $\bm{x}\in\mathbb{S}^2$ is the state, $\bm{u}\in\mathbb{R}^m$ is the control input, $\Pi(\bm{x}):\mathbb{R}^m\to \sf{T}_{\bm{x}}\mathbb{S}^2$ is a smooth matrix-valued function.

Problem 1 (Control over spherical polytopes)

Given a spherical polytope partitioning P. Let $\mathcal{P}' \subset \mathcal{P}$, $M := \cup_i P_i$, $\forall P_i \in \mathcal{P}'$, and $x_g \in M$. Assume that M is connected. Design a control input u such that

- all integral curves are smooth;
- **2** for all initial states $x(0) \in M$, $x(t) \in M$ for all $t > 0$;
- $\bullet \mathbf{x}(t)$ reaches \mathbf{x}_{g} asymptotically.

Decompose-planning-control formulation

Decompose-planning-control formulation:

Decompose-planning-control formulation

Decompose-planning-control formulation:

The missing stone

 \Rightarrow control over the planned spherical polytope transitions.

Gnomonic projection

Gnomonic projection.

Gnomonic projection

Gnomonic projection.

The gnomonic projection for $a \in \mathbb{S}^2$, is a mapping $\phi_{\boldsymbol{a}}: \boldsymbol{x} \in \mathcal{U}_{\boldsymbol{a}} \mapsto \boldsymbol{\xi} \in \mathbb{R}^2$

$$
\phi_{\mathbf{a}}(\mathbf{x}) := J_2 R_{\mathbf{a}} \frac{\mathbf{x}}{\mathbf{a}^\top \mathbf{x}},\tag{2}
$$

where $J_2 := [I_2 \quad \mathbf{0}_{2 \times 1}]$, R_a is a constant rotation matrix given a.

Gnomonic projection

The gnomonic projection for $a \in \mathbb{S}^2$, is a mapping $\phi_{\boldsymbol{a}}: \boldsymbol{x} \in \mathcal{U}_{\boldsymbol{a}} \mapsto \boldsymbol{\xi} \in \mathbb{R}^2$

$$
\phi_{\mathbf{a}}(\mathbf{x}) := J_2 R_{\mathbf{a}} \frac{\mathbf{x}}{\mathbf{a}^\top \mathbf{x}}, \tag{2}
$$

where $J_2 := [I_2 \quad \mathbf{0}_{2 \times 1}]$, R_a is a constant rotation matrix given a.

Gnomonic projection.

 \bullet $\phi_{\bf a}$ is a homeomorphism. $(U_{\bf a}, \phi_{\bf a})$ is a chart for \mathbb{S}^2 .

Proposition 1

The collection of charts $\mathcal{A} = \{ (U_a, \phi_a) \}_{a \in \mathbb{S}^2}$ is a smooth atlas for \mathbb{S}^2 .

Proposition 2

For any $x_1, x_2 \in U_{\mathbf{e}_3}$, the gnomonic projection of seg (x_1, x_2) forms a line segment in \mathbb{R}^2 .

Proposition 1

The collection of charts $\mathcal{A} = \{ (U_a, \phi_a) \}_{a \in \mathbb{S}^2}$ is a smooth atlas for \mathbb{S}^2 .

Proposition 2

For any $x_1, x_2 \in U_{\mathbf{e}_3}$, the gnomonic projection of seg(x_1, x_2) forms a line segment in \mathbb{R}^2 .

Recall the kinematic model is

 $\dot{x} = \Pi(x)u$.

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\text{Im}(\Pi(x)) = \text{T}_x \mathbb{S}^2$.

Recall the kinematic model is

 $\dot{x} = \Pi(x)u$.

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\text{Im}(\Pi(x)) = \text{T}_x \mathbb{S}^2$.

Consider the change of state variable $\mathcal{E} = \phi_a(\mathbf{x}), \mathbf{x} \in U_a$.

Recall the kinematic model is

 $\dot{x} = \Pi(x)u$.

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\text{Im}(\Pi(x)) = \text{T}_x \mathbb{S}^2$.

Consider the change of state variable $\xi = \phi_a(x)$, $x \in U_a$. The transformed dynamics of ξ is given by

$$
\dot{\xi} = \nabla \phi_a(\mathbf{x}) \dot{\mathbf{x}} = \nabla \phi_a(\mathbf{x}) \Pi(\mathbf{x}) \mathbf{u} := \Theta_a(\mathbf{x}) \mathbf{u}
$$
(3)

where $\nabla \phi_a(\mathbf{x})$ denotes the Jacobian matrix.

Recall the kinematic model is

 $\dot{x} = \Pi(x)u$.

Assumption 1 (Fully actuated)

For all $x \in \mathbb{S}^2$, $\text{Im}(\Pi(x)) = \text{T}_x \mathbb{S}^2$.

Consider the change of state variable $\xi = \phi_a(x)$, $x \in U_a$. The transformed dynamics of ξ is given by

$$
\dot{\xi} = \nabla \phi_a(\mathbf{x}) \dot{\mathbf{x}} = \nabla \phi_a(\mathbf{x}) \Pi(\mathbf{x}) \mathbf{u} := \Theta_a(\mathbf{x}) \mathbf{u}
$$
(3)

where $\nabla \phi_a(\mathbf{x})$ denotes the Jacobian matrix.

Lemma 1

If Assumption [1](#page-26-0) holds, then $\Theta_{a}(\mathsf{x})\in\mathbb{R}^{2\times m}$ has full row rank for all $\mathsf{x}\in\mathsf{U}_{a}$ and all $a \in \mathbb{S}^2$.

Proposition 4

Consider the kinematic model (1) evolving on the 2-dimensional hemisphere U_a under the following feedback control law

$$
\mathbf{u} = (\Theta_{\mathbf{a}}(\mathbf{x}))^{\dagger} \mathbf{v} \tag{4}
$$

where $v \in \mathbb{R}^2$ is a virtual control input. Then, the dynamics of the new variable $\boldsymbol{\xi}=\phi_{\boldsymbol{a}}(\boldsymbol{x})$, evolving in the Euclidean space \mathbb{R}^2 , is

$$
\dot{\xi} = \mathbf{v}.\tag{5}
$$

Feedback law construction in one hemisphere

For spherical polytopes $\{P_i\}$ that jointly lie on one hemisphere U_a ,

Previous results on VF construction

For a polytope Q , a vector field V is constructed by smoothly blending a cell vector field V_c and a face vector field V_{f_i} , i.e.,

$$
V(\xi) = \text{unit}(b(\xi)V_c(\xi) + (1 - b(\xi))V_{f_i}(\xi))
$$
\n(6)

for any point $\boldsymbol{\xi}$ in the region of influence of face f_i .

• The constructed vector field is smooth on Q except for the polytope vertices.

²S. R. Lindemann and S. M. LaValle, International Journal of Robotics Research, 2009.

X. Tan (xiaotan@kth.se) (KTH) [Smooth feedback construction over spherical polytopes](#page-0-0) ECC 2020 16/23

For spherical polytopes $\{P_i\}$ that jointly lie on one hemisphere U_a ,

$$
x, P, \text{seg}_{ex}/x_g
$$

$$
v(\xi)
$$

$$
v(\xi)
$$

$$
u = (\theta_a(x))^{\dagger} v
$$

$$
u(x)
$$

Analysis: From [2], any resulting integral curve s starting from $s(0) \in \cup_i Q_i$ is smooth, contained in $\cup_i Q_i$, $s(t)$ converges to $\boldsymbol{\xi}_g$ asymptotically.

Correspondingly, any integral curve starting from $\phi_{\overline{\bm{a}}}^{-1}(s(0))\in \cup_i P_i$ is smooth, contained in $\cup_i P_i$, and $\phi_{\bm{a}}^{-1} \circ s(t)$ converges to $\bm{\mathsf{x}}_{\bm{g}}$ asymptotically.

²S. R. Lindemann and S. M. LaValle, International Journal of Robotics Research, 2009. X. Tan (xiaotan@kth.se) (KTH) [Smooth feedback construction over spherical polytopes](#page-0-0) ECC 2020 17 / 23

Simulation results in one hemisphere

Feedback construction across charts

A chart transition is needed when constructing a feedback law for spherical polytopes across different charts. One example:

Feedback construction across charts

A chart transition is needed when constructing a feedback law for spherical polytopes across different charts. One example:

- **1** for $x \in P_1 \cup P_2$ except the region of influence of f_a in P_1 , the control law is constructed as before;
- 2 for x in the region of influence of f_a in P₁, the control input v at $\xi = \phi_a(x)$ is constructed as

 $\mathbf{v} = b(\xi)V_c(\xi) + (1 - b(\xi))\Theta_{\mathbf{a}}\Theta_{\mathbf{b}}^\dagger$ $_{\boldsymbol{b}}^{\intercal}V_{\mathnormal{f}_{\boldsymbol{b}},2}(\boldsymbol{\xi})$

where $V_{f_b,2}$ denotes the face vector field of f_h in Q_2 . The control input $\boldsymbol{u} = \Theta_{\boldsymbol{a}}(\boldsymbol{x})^{\dagger} \boldsymbol{v}$.

Simulation results across charts

• Studied a spherical-polytope-based pratitioning.

- Studied a spherical-polytope-based pratitioning.
- Gnomonic projection has nice properties that
	- it constructs a smooth altas on the 2−sphere;
	- it projects the spherical polytopes to Euclidean polytopes.
- Studied a spherical-polytope-based pratitioning.
- Gnomonic projection has nice properties that
	- it constructs a smooth altas on the 2-sphere;
	- it projects the spherical polytopes to Euclidean polytopes.
- Nonlinear kinematic dynamics can be locally transformed into a single integrator in \mathbb{R}^2 via feedback linearization.
- Studied a spherical-polytope-based pratitioning.
- Gnomonic projection has nice properties that
	- it constructs a smooth altas on the 2−sphere;
	- it projects the spherical polytopes to Euclidean polytopes.
- Nonlinear kinematic dynamics can be locally transformed into a single integrator in \mathbb{R}^2 via feedback linearization.
- Algorithms that were originally designed for Euclidean navigation now can be used on 2−spheres.

Apply the spherical-polytope partitioning and gnomonic projection tools to under-actuated second-order dynamical systems evolving on higher dimensional spheres.

The End