A contract negotiation scheme for safety verification of interconnected systems

Xiao Tan^a, Antonis Papachristodoulou^b, Dimos V. Dimarogonas^a

 a School of EECS, KTH Royal Institute of Technology, Sweden b Department of Engineering Science, University of Oxford, United Kingdom

27th June 2024

Safety verification for interconnected systems

- Engineering systems are becoming more complex, closely interconnected in dynamics and safety requirements;
- Before deployment of new control schemes, verifying safety of the closed-loop interconnected systems is vital;
- Simulation/experiments/tests require extensive resources with possible existence of corner cases;
- Yet, most existing safety verification algorithms are restricted to small-size problems.

Safety of interconnected systems

Continuous-time system: $G = (U, W, X, Y, X^0, \mathcal{T})$

$$\mathcal{T}: \quad \dot{x}(t) = f(x, w) + g(x, w)u, \quad o: x \mapsto y$$
(1)

Safety of interconnected systems

Continuous-time system: $G = (U, W, X, Y, X^0, \mathcal{T})$

$$\mathcal{T}: \quad \dot{x}(t) = f(x, w) + g(x, w)u, \quad o: x \mapsto y \tag{1}$$

Denote by I_B the set of signals that only take values in the set B.

Safety: given safe region $Q \subseteq X$, G is safe w.r.t. $\underline{W} \subseteq W$ if

$$\exists u|_{[0,t]} \in I_U$$
 s.t. $x|_{[0,t]} \in I_Q$ for all $t > 0$

for all initial states $x_0 \in X^0$ and all internal input signals $w|_{[0,t]} \in I_W$.

Existing works on safety verification

The existence of a safety certificate \implies system safety is verified.

Incomplete list of existing methods for small-size systems

- sum-of-squares approaches^{1,2}
- 2 data-driven/learning-based approaches^{3,4}
- Iamiltonian-Jacobi reachability analysis⁵

Clark, "Verification and synthesis of control barrier functions," in <u>2021 60th IEEE Conference on Decision and Control (CDC)</u>, 2021, pp. 6105–6112.

Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, 2021, pp. 1-11.

⁵ J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, "Robust control barrier–value functions for safety-critical control," in 60th IEEE Conference on Decision and Control (CDC), IEEE, 2021, pp. 6814–6821.

²H. Wang, K. Margellos, and A. Papachristodoulou, "Safety verification and controller synthesis for systems with input constraints," IFAC-PapersOnLine, vol. 56, no. 2, pp. 1698–1703, 2023.

³A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni, "Learning control barrier functions from expert demonstrations," in 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 3717–3724.

⁴A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, "FOSSIL: A software tool for the formal synthesis of Lyapunov functions and barrier certificates using neural networks," in

Existing works on safety verification

The existence of a safety certificate \implies system safety is verified. Methods for large-size systems: compositional reasoning.

small-gain-like conditions on local ISSafety property^{6,7}

entralized Lyapunov function construction⁸

However, adaptation on local safety property usually requires a central computation node.

⁶ P. Jagtap, A. Swikir, and M. Zamani, "Compositional construction of control barrier functions for interconnected control systems," in Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–11.

⁸S. Coogan and M. Arcak, "A dissipativity approach to safety verification for interconnected systems," Transactions on Automatic Control, vol. 60, no. 6, pp. 1722–1727, 2014.

⁷Z. Lyu, X. Xu, and Y. Hong, "Small-gain theorem for safety verification of interconnected systems," <u>Automatica</u>, vol. 139, p. 110178, 2022.

Problem and proposed solution

Problems

Given interconnected system $\langle (G_i)_{i \in \mathcal{I}}, \mathcal{E} \rangle, G_i = (U_i, W_i, X_i, Y_i, X_i^0, \mathcal{T}_i)$, control laws $k_i(x_i, w_i)$, and safe region $\prod_{i \in \mathcal{I}} \mathcal{Q}_i$. Determine if the closed-loop system is safe.

Problem and proposed solution

Problems

Given interconnected system $\langle (G_i)_{i \in \mathcal{I}}, \mathcal{E} \rangle, G_i = (U_i, W_i, X_i, Y_i, X_i^0, \mathcal{T}_i)$, control laws $k_i(x_i, w_i)$, and safe region $\prod_{i \in \mathcal{I}} \mathcal{Q}_i$. Determine if the closed-loop system is safe.

Design a computationally tractable approach that locally constructs and adapts safety properties for compositional reasoning

Problem and proposed solution

Problems

Given interconnected system $\langle (G_i)_{i \in \mathcal{I}}, \mathcal{E} \rangle, G_i = (U_i, W_i, X_i, Y_i, X_i^0, \mathcal{T}_i)$, control laws $k_i(x_i, w_i)$, and safe region $\prod_{i \in \mathcal{I}} \mathcal{Q}_i$. Determine if the closed-loop system is safe.

Design a computationally tractable approach that locally constructs and adapts safety properties for compositional reasoning

Proposed solution:

Sum-of-squares (SOS) for constructing local barrier certificates + Assume-guarantee contracts (AGC) for compositional reasoning. + Contract negotiation scheme with completeness guarantee

 $(w_{i,1}, w_{i,2}) \in \underline{W}_i$ $x_i \in \underline{X}_i$ $\underline{Y}_i = o_i(\underline{X}_i)$

• For subsystem G_i and its safe region \mathcal{Q}_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot) \in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot) \in I_{\underline{X}_i}$

 $(w_{i,1}, w_{i,2}) \in \underline{W}_i$ $x_i \in \underline{X}_i$ $\underline{Y}_i = o_i(\underline{X}_i)$

• For subsystem G_i and its safe region \mathcal{Q}_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot) \in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot) \in I_{\underline{X}_i}$

• local safety condition $\underline{X}_i^0 \subseteq \underline{X}_i \subseteq \mathcal{Q}_i$

 $(w_{i,1}, w_{i,2}) \in \underline{W}_i$ $x_i \in \underline{X}_i$ $\underline{Y}_i = o_i(\underline{X}_i)$

• For subsystem G_i and its safe region \mathcal{Q}_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot) \in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot) \in I_{\underline{X}_i}$

• local safety condition
$$\underline{X}_i^0 \subseteq \underline{X}_i \subseteq \mathcal{Q}_i$$

 $\textbf{ safety property composition } (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i}), i \in \mathcal{I}$

⁹A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109910,

.

 $(w_{i,1}, w_{i,2}) \in \underline{W}_i$ $x_i \in \underline{X}_i$ $\underline{Y}_i = o_i(\underline{X}_i)$

• For subsystem G_i and its safe region \mathcal{Q}_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot) \in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot) \in I_{\underline{X}_i}$

- local safety condition $\underline{X}_i^0 \subseteq \underline{X}_i \subseteq \mathcal{Q}_i$
- $\textbf{ safety property composition } (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i}), i \in \mathcal{I}$
 - composition condition

⁹A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109910,

 $(w_{i,1}, w_{i,2}) \in \underline{W}_i$ $x_i \in \underline{X}_i$ $\underline{Y}_i = o_i(\underline{X}_i)$

• For subsystem G_i and its safe region \mathcal{Q}_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot) \in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot) \in I_{\underline{X}_i}$

- local safety condition $\underline{X}_i^0 \subseteq \underline{X}_i \subseteq \mathcal{Q}_i$
- $\textbf{③ safety property composition } (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i}), i \in \mathcal{I}$
 - composition condition
 - circular reasoning issue: mild regularity condition required by assume-guarantee contracts⁹

⁹A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109910,

 $(w_{i,1}, w_{i,2}) \in \underline{W}_i$ $x_i \in \underline{X}_i$ $\underline{Y}_i = o_i(\underline{X}_i)$

- For subsystem G_i and its safe region \mathcal{Q}_i
 - SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot) \in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot) \in I_{\underline{X}_i}$

- local safety condition $\underline{X}_i^0 \subseteq \underline{X}_i \subseteq \mathcal{Q}_i$
- $\textbf{③ safety property composition } (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i}), i \in \mathcal{I}$
 - composition condition
 - circular reasoning issue: mild regularity condition required by assume-guarantee contracts⁹
- O How to locally adapt AGCs if composition condition is not met?

⁹A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109910,

Overall scheme

Assumptions

We assume the following:

- The local feedback law u_i = k_i(x_i, w_i) ∈ U_i is known. Denote the closed-loop dynamics x_i = F_i(x_i, w_i);
- **②** The class \mathcal{K} function $\alpha(\cdot)$ in CBF conditions is chosen to be a linear function with constant gain a.
- Solution The initial set X_i⁰, safe region Q_i, and the internal input set W_i are super-level sets, i.e., X_i⁰ = {x_i : b_i⁰(x_i) ≥ 0}, Q_i = {x_i : q_i(x_i) ≥ 0}, W_i = {(y_{j1}, y_{j2},..., y_{jp}) : d_{jk}ⁱ(y_{jk}) ≥ 0, k = 1, 2, ..., p}, where N(i) = {j₁, j₂, ..., j_p}.
- All the functions $b_i^0, q_i, d_{j_k}^i(y_{j_k}), f_i, g_i, k_i$ are polynomials.
- The subsets of W_i, Q_i , i.e., $\underline{W}_i, \underline{Q}_i$ are chosen in the form of

$$\underline{\mathcal{Q}}_i = \{x_i : q_i(x_i) \ge \zeta \mathbf{1} \text{ for some } \zeta \ge 0\},\\ \underline{W}_i = \{(y_{j_1}, \dots, y_{j_p}) : d^i_{j_k}(y_{j_k}) \ge \delta \mathbf{1} \text{ for some } \delta \ge 0\}.$$

We restrict the search for non-negative polynomials to the set of SOS polynomials up to a certain degree.

Local AGC construction

If there exist SOS polynomials $\sigma_{init}, \sigma_{safe} \in \Sigma[x], \sigma_k \in \Sigma[x, y_k], k = 1, 2, ..., p$, polynomial $h \in \mathcal{R}(x)$, and positive ϵ, a, δ such that

$$h(x) - \sigma_{init}b^0(x) \in \Sigma[x];$$
 (2a)

afe region:
$$-h(x) + \sigma_{safe}q(x) \in \Sigma[x];$$
 (2b)

BF condition:
$$\nabla h(x)F(x, y_1, \dots, y_p) + ah(x)$$

 $-\sum_{k=1}^p \sigma_k(d_k(y_k) - \delta) - \epsilon \in \Sigma[x, y_1, \dots, y_p].$ (2c)

then, letting $\underline{W} = \{(y_1, \dots, y_k, \dots, y_p) : d_k(y_k) \ge \delta\}$, we find an assume-guarantee contract $C = (I_{\underline{W}}, I_{\underline{X}}, I_{\underline{Y}})$

m*Subscript *i* is neglected for notational brevity.

initial set:

AGC composition and negotiations

Composition condition: $\Pi_{j \in N(i)} \underline{Y}_j \subseteq \underline{W}_i, \forall i \in \mathcal{I}$

- We refer to the process of refining local AGCs as negotiations.
- Negotiations under two special cases are discussed.

Two special sets when constructing local AGCs

$$\begin{array}{c} & u = k(x,w) \\ \hline G_{j} \\ \hline W = \{(...,y_{j_{k}},...): d_{j_{k}}(y_{j_{k}}) \geq \delta\} \end{array} \\ \begin{array}{c} \mathcal{C} = \{x:h(x) \geq 0\} \\ \mathcal{C} = \{x:h(x)$$

• Intuitively, the larger \underline{W}_i is, the smaller \underline{X}_i could be.

Maximal internal input set \underline{W}^* : largest disturbance a subsystem can tolerate while still remaining safe

$$\min \delta$$
s.t. (2a), (2b), (2c), $\delta \ge 0$
(3)

Minimal safe region Q^* under the maximal internal input set: smallest impact a subsystem to its child nodes

$\max \zeta$ s.t. (2a), (2c), $\zeta \ge 0$ $-h(x) + \sigma_{safe}(q(x) - \zeta) \in \Sigma[x]$ (4)

*Subscript i is neglected for notational brevity.

AGC negotiations

Special case: Acyclic connectivity graph

When the connectivity graph is a tree, the hierarchical structure resembles a client-contractor relation model.

Algorithm 1

- Start with the leaf nodes. Calculate the maximal internal input sets;
- For node *i*, if all child nodes have specified the largest internal input set, then compute its maximal internal input set.
- Propagate towards root nodes. Return False if infeasible.
- Algorithm 1 terminates in finite steps and returns either True or False.
- ▶ If Algorithm 1 returns True, then compatible local AGCs are found .
- If Algorithm 1 returns False, then there exist no compatible iAGCs under our Assumption.

AGC negotiations

Special case: Homogeneous interconnected system

homogeneous interconnected system $G = \langle (G_i)_{i \in \mathcal{I}}, \mathcal{E} \rangle$

Algorithm 2

- Take an arbitrary node G_i , calculate the AGC $C_i = (I_{\underline{W}_i^\star}, I_{\underline{X}_i^\star}, I_{\underline{Y}_i^\star})$ with \underline{W}_i^\star the maximal internal input sets and \underline{X}_i^\star the corresp. minimal safe region;
- If not compatible, update Q_i to be the largest inner-approximation of ∩_{k∈Child(i)} o_i⁻¹(Proj_i(<u>W</u>_k)) ∩ Q_i
- Goto Step 1. Return False if infeasible.
- Algorithm 2 terminates eventually and returns either True or False.
- ► If Algorithm 2 returns True, then compatible local AGCs are found.
- If Algorithm 2 returns False, then there exist no common and compatible AGCs under our Assumption.

AGC negotiations

Vehicular platooning: an acyclic graph example

Vehicle dynamics relative to vehicle 0 (leader):

$$\dot{\tilde{p}}_i = \tilde{v}_i, \qquad \dot{\tilde{v}}_i = \tilde{u}_i - (\tilde{v}_i - \tilde{v}_{i-1})^3$$
 (5)

Choose local variable $x_i = (d_i, \tilde{v}_i)$, $d_i = \tilde{p}_i - \tilde{p}_{i-1} - l$. Local controller

$$\tilde{u}_i = -(\tilde{v}_i - \tilde{v}_{i-1}) - (d_i - 3) - (d_i - 3)^3, i \in \mathcal{I}.$$

The initial state set, safe region as well as local AGCs are:

Room temperature: a homogeneous system example

Room temperature model and its controller over a circular building

$$\begin{aligned} \dot{x}_i(t) &= \alpha(x_{i+1} + x_{i-1} - 2x_i) + \beta(t_e - x_i) + \gamma(t_h - x_i)u_i, \\ y_i(t) &= x_i, \\ u_i &= 0.05(x_{i+1} + x_{i-1} - 2x_i) + 0.05(25 - x_i) \end{aligned}$$

Each subsystem $G_i = (U_i, W_i, X_i, Y_i, X_i^0, \mathcal{T}_i)$ has x_i as the state, (x_{i-1}, x_{i+1}) as the internal input, u_i as the external input, $o_i(x_i) = x_i$, $U_i, X_i, Y_i = \mathbb{R}, W_i = \mathbb{R}^2$. $X_i^0 = \{x_i : 1 - (x_i - 25)^2 \ge 0\}$, and $\mathcal{Q}_i = \{x_i : 5^2 - (x_i - 25)^2 \ge 0\}$.

Summary

- In this work, we proposed an SOS and AGC framework for safety verification of interconnected systems;
- Proposed contract negotiation algorithms are shown to be complete for acyclic graphs or homogeneous systems;
- Future work includes extension to general graphs with completeness guarantees as well as better implementation.

Any questions? Contact us!

