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Safety verification for interconnected systems
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▶ Engineering systems are becoming more complex, closely
interconnected in dynamics and safety requirements;

▶ Before deployment of new control schemes, verifying safety of the
closed-loop interconnected systems is vital;

▶ Simulation/experiments/tests require extensive resources with
possible existence of corner cases;

▶ Yet, most existing safety verification algorithms are restricted to
small-size problems.
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Safety of interconnected systems

Gi(xi)
internal input wi,1

internal input wi,2

external input

output yi = oi(xi)

Gi = (Ui,Wi, Xi, Yi, X
0
i , Ti)

ui = ki(xi, wi)
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(I, E)

interconnected system G = ⟨(Gi)i∈I , E⟩

Connectivity graph

Continuous-time system: G = (U,W,X, Y,X0, T )

T : ẋ(t) = f(x,w) + g(x,w)u, o : x 7→ y (1)

Denote by IB the set of signals that only take values in the set B.

Safety: given safe region Q ⊆ X, G is safe w.r.t. W ⊆ W if

∃u|[0,t] ∈ IU s.t. x|[0,t] ∈ IQ for all t > 0

for all initial states x0 ∈ X0 and all internal input signals w|[0,t] ∈ IW .
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Existing works on safety verification

The existence of a safety certificate =⇒ system safety is verified.

Incomplete list of existing methods for small-size systems

1 sum-of-squares approaches1,2

2 data-driven/learning-based approaches3,4

3 Hamiltonian-Jacobi reachability analysis5

1A. Clark, “Verification and synthesis of control barrier functions,” in 2021 60th IEEE Conference on Decision and Control (CDC),
2021, pp. 6105–6112.

2H. Wang, K. Margellos, and A. Papachristodoulou, “Safety verification and controller synthesis for systems with input constraints,”
IFAC-PapersOnLine, vol. 56, no. 2, pp. 1698–1703, 2023.

3A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni, “Learning control barrier functions from expert
demonstrations,” in 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 3717–3724.

4A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, “FOSSIL: A software tool for the formal synthesis of Lyapunov
functions and barrier certificates using neural networks,” in
Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, 2021, pp. 1–11.

5J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust control barrier–value functions for safety-critical control,” in
2021 60th IEEE Conference on Decision and Control (CDC), IEEE, 2021, pp. 6814–6821.
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Existing works on safety verification

The existence of a safety certificate =⇒ system safety is verified.

Methods for large-size systems: compositional reasoning.

1 small-gain-like conditions on local ISSafety property6,7

2 centralized Lyapunov function construction8

However, adaptation on local safety property
usually requires a central computation node.

6P. Jagtap, A. Swikir, and M. Zamani, “Compositional construction of control barrier functions for interconnected control systems,” in
Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–11.

7Z. Lyu, X. Xu, and Y. Hong, “Small-gain theorem for safety verification of interconnected systems,” Automatica, vol. 139, p. 110 178,
2022.

8S. Coogan and M. Arcak, “A dissipativity approach to safety verification for interconnected systems,”
IEEE Transactions on Automatic Control, vol. 60, no. 6, pp. 1722–1727, 2014.
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Problem and proposed solution

Problems

Given interconnected system ⟨(Gi)i∈I , E⟩, Gi = (Ui,Wi, Xi, Yi, X
0
i , Ti),

control laws ki(xi, wi), and safe region Πi∈IQi.
Determine if the closed-loop system is safe.

Design a computationally tractable approach that
locally constructs and adapts safety properties for compositional
reasoning

Proposed solution:

Sum-of-squares (SOS) for constructing local barrier certificates
+

Assume-guarantee contracts (AGC) for compositional reasoning.
+

Contract negotiation scheme with completeness guarantee
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Overall verification scheme
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Parent nodes Child nodes

(wi,1, wi,2) ∈ W i xi ∈ X i Y i = oi(X i)

X0
i

Qi

CiCi = ( , , )oi( )Ci×
Proj1W i

Proj2W i

1 For subsystem Gi and its safe region Qi

• SOS approach constructs an assume-guarantee contract
Ci = (IW i

, IXi
, IY i

), meaning

Assume wi(·) ∈ IW i
, then it guarantees xi(·) ∈ IXi

• local safety condition X0
i ⊆ Xi ⊆ Qi

2 safety property composition (IW i
, IXi

, IY i
), i ∈ I

• composition condition
• circular reasoning issue: mild regularity condition required by

assume-guarantee contracts9

3 How to locally adapt AGCs if composition condition is not met?

9A. Saoud, A. Girard, and L. Fribourg, “Assume-guarantee contracts for continuous-time systems,” Automatica, vol. 134, p. 109 910,
2021.
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Assumptions
We assume the following:

1 The local feedback law ui = ki(xi, wi) ∈ Ui is known. Denote the
closed-loop dynamics ẋi = Fi(xi, wi);

2 The class K function α(·) in CBF conditions is chosen to be a linear
function with constant gain a.

3 The initial set X0
i , safe region Qi, and the internal input set Wi are

super-level sets, i.e., X0
i = {xi : b

0
i (xi) ≥ 0},Qi = {xi : qi(xi) ≥

0},Wi = {(yj1 , yj2 , . . . , yjp) : dijk(yjk) ≥ 0, k =
1, 2, . . . , p},where N(i) = {j1, j2, . . . , jp}.

4 All the functions b0i , qi, d
i
jk
(yjk), fi, gi, ki are polynomials.

5 The subsets of Wi,Qi, i.e., W i,Qi are chosen in the form of

Qi = {xi : qi(xi) ≥ ζ1 for some ζ ≥ 0},
W i = {(yj1 , . . . , yjp) : dijk(yjk) ≥ δ1 for some δ ≥ 0}.

6 We restrict the search for non-negative polynomials to the set of
SOS polynomials up to a certain degree.
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Local AGC construction
u = k(x,w)

X0

Q

C = {x : h(x) ≥ 0}
?Gi(xi)

Gh

Gj

W = {(..., yjk, ...) : djk(yjk) ≥ δ}

X0 = {x : b0(x) ≥ 0}
C

Q = {x : q(x) ≥ 0}

If there exist SOS polynomials σinit, σsafe ∈ Σ[x], σk ∈ Σ[x, yk],
k = 1, 2, . . . , p, polynomial h ∈ R(x), and positive ϵ, a, δ such that

initial set: h(x)− σinitb
0(x) ∈ Σ[x]; (2a)

safe region: − h(x) + σsafeq(x) ∈ Σ[x]; (2b)

BF condition: ∇h(x)F (x, y1, . . . , yp) + ah(x)

−
p∑

k=1

σk(dk(yk)− δ)− ϵ ∈ Σ[x,y1, . . . , yp]. (2c)

then, letting W = {(y1, . . . , yk . . . , yp) : dk(yk) ≥ δ}, we find an

assume-guarantee contract C = (IW , IX , IY )

*Subscript i is neglected for notational brevity.
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AGC composition and negotiations
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(I, E)

interconnected system G = ⟨(Gi)i∈I , E⟩

Connectivity graph

Gi(xi)

Gh

Gj

Gk

Y h × Y j ⊆ W iComposition condition

Composition condition: Πj∈N(i)Y j ⊆ W i,∀i ∈ I

1 We refer to the process of refining local AGCs as negotiations.

2 Negotiations under two special cases are discussed.
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Two special sets when constructing local AGCs
u = k(x,w)

X0

Q

C = {x : h(x) ≥ 0}
?Gi(xi)

Gh

Gj

W = {(..., yjk, ...) : djk(yjk) ≥ δ}

X0 = {x : b0(x) ≥ 0}
C

Q = {x : q(x) ≥ 0}

▶ Intuitively, the larger W i is, the smaller Xi could be.

▶ Maximal internal input set W ⋆ : largest disturbance a subsystem
can tolerate while still remaining safe

min δ

s.t. (2a), (2b), (2c), δ ≥ 0
(3)

▶ Minimal safe region Q⋆ under the maximal internal input set:

smallest impact a subsystem to its child nodes

max ζ

s.t. (2a), (2c), ζ ≥ 0

− h(x) + σsafe(q(x)− ζ) ∈ Σ[x]

(4)

*Subscript i is neglected for notational brevity.
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Special case: Acyclic connectivity graph

G3

G4

G5

G2

G0

G1

Leaf nodesRoot nodes

When the connectivity graph is a tree, the hierarchical structure
resembles a client-contractor relation model.

Algorithm 1

1 Start with the leaf nodes. Calculate the maximal internal input sets;

2 For node i, if all child nodes have specified the largest internal input
set, then compute its maximal internal input set.

3 Propagate towards root nodes. Return False if infeasible.

▶ Algorithm 1 terminates in finite steps and returns either True or
False.

▶ If Algorithm 1 returns True, then compatible local AGCs are found .

▶ If Algorithm 1 returns False, then there exist no compatible iAGCs
under our Assumption.
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Special case: Homogeneous interconnected system

G0

G1 G3

G2

homogeneous interconnected system G = ⟨(Gi)i∈I , E⟩

Gi = Gj, Qi = Qj,∀i, j ∈ I

Algorithm 2

1 Take an arbitrary node Gi, calculate the AGC Ci = (IW⋆
i
, IX⋆

i
, IY ⋆

i
)

with W ⋆
i the maximal internal input sets and X⋆

i the corresp.
minimal safe region;

2 If not compatible, update Qi to be the largest inner-approximation
of

⋂
k∈Child(i) o

−1
i (Proji(W k)) ∩Qi

3 Goto Step 1. Return False if infeasible.

▶ Algorithm 2 terminates eventually and returns either True or False.
▶ If Algorithm 2 returns True, then compatible local AGCs are found.
▶ If Algorithm 2 returns False, then there exist no common and

compatible AGCs under our Assumption.
AGC negotiations 12 / 15



Vehicular platooning: an acyclic graph example

012N

p̃1p̃2
p̃N

ld1d2dN

Vehicle dynamics relative to vehicle 0 (leader):

˙̃pi = ṽi, ˙̃vi = ũi − (ṽi − ṽi−1)
3 (5)

Choose local variable xi = (di, ṽi), di = p̃i − p̃i−1 − l. Local controller

ũi = −(ṽi − ṽi−1)− (di − 3)− (di − 3)3, i ∈ I.

The initial state set, safe region as well as local AGCs are:

2 2.5 3 3.5 4

-1

0

1
Initial set
Safe region

(a) X0
i and Qi, i = 1, 2, 3.

2 2.5 3 3.5 4

-1

0

1
Initial set
Upd. safe region
Guarantee set

(b) AGC sets for vehicle 3.
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Initial set
Upd. safe region
Guarantee set

(c) AGC sets for vehicle 2.
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Upd. safe region
Guarantee set
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(d) AGC sets for vehicle 1.

Figure 2: Results for the platooning example.

2015). An illustration is given in Fig. 3. Each room has its tem-
perature xi, which is affected by neighboring rooms, the heater,
and the environment as follows

ẋi(t) = α(xi+1 + xi−1 − 2xi) + β(te − xi) + γ(th − xi)ui,

yi(t) = xi,

where xi+1, xi−1 are the temperatures of room i+1 and i−1 (and
we conveniently let x0(t) = xN(t), xN+1(t) = x1(t)), te, th are the
temperatures of the environment and the heater, respectively.
α, β, γ are the respective conduction factors for the neighboring
room, the environment, and the heater. ui denotes the valve con-
trol to the heater. Choose (te, th, α, β, γ) = (−1, 50, 0.05, 0.008,
0.004), and the controller

ui = 0.05(xi+1 + xi−1 − 2xi) + 0.05(25 − xi).

The initial temperature range is SI,i = [24, 26] and the safe
temperature range is Qi = [20, 30] for every room.

We can model the temperature system as an interconnected
system. In particular, each subsystem Gi = (Ui,Wi, Xi,Yi, X0

i ,Ti)
has xi as the state, (xi−1, xi+1) as the internal input, ui as the ex-
ternal input, oi(xi) = xi, Ui, Xi,Yi = R,Wi = R2, X0

i = {xi :
1 − (xi − 25)2 ≥ 0}, and Qi = {xi : 52 − (xi − 25)2 ≥ 0}. The
connectivity relation E is defined that ( j, i) ∈ E if and only if
j = i ± 1, i = 1, 2, . . . ,N. Per Definition 6, this is a homoge-
neous interconnected system, and we will apply Algorithm 4
for this example.

At the first iteration, by solving (7) and (8), we obtain δ⋆ =
20.575, ζ⋆ = 0. Thus, we have constructed a local iAGC Ci =

(IW i
, IXi
, IY i

) with

W i = {(xi−1, xi+1) : −x2
j + 50x j − 620.575 ≥ 0, j = i ± 1},

Xi = Y i = {xi : −x2
i + 50xi − 600 ≥ 0}.

After assigning the same local contract to all subsystems, one
verifies that the contract compatibility condition (9) does not
hold. According to Step 12 of Algorithm 4, we update the safe
region for each room to beQ′i = {xi : −x2

i +50xi−−620.575 ≥ 0}
and start over. For the second iteration, we obtain local iAGC
Ci = (IW i

, IXi
, IY i

) with

W i = {(xi−1, xi+1) : −x2
j + 50x j − 622.138 ≥ 0, j = i ± 1},

Xi = Y i = {xi : −x2
i + 50xi − 623.575 ≥ 0}.

This time, one verifies that the compatibility condition (9) holds,
and thus, certifies the safety of the room temperature system.
An illustration of the assumption and the guarantee sets is given
in Fig. 4. We note that the computation expense is not related to

x
2

xi
x i−

1x
i+1

x1xN

x N
−
1

Figure 3: Room temperature scenario.

20 22 24 26 28 30
-10

0

10

20
Assumption level set
Guarantee level set

20 22 24 26 28 30
-10

0

10

20
Assumption level set
Guarantee level set

Figure 4: Assumption/guarantee sets for the room temperature example. Left:
iteration 1, right: iteration 2.

the number of rooms N, and only small-size SOS optimization
problems involving 3 independent variables are to be solved.
This is in contrast to a naı̈ve SOS approach for synthesizing a
barrier function, which is intractable when thousands of rooms
are involved.

5. Conclusions

In this work, we propose a safety verification scheme for in-
terconnected continuous-time nonlinear systems based on assume-
guarantee contracts (AGCs) and sum-of-squares (SOS) programs.
The proposed scheme uses SOS optimization to calculate local
invariance AGCs by synthesizing local (control) barrier func-
tions, and then negotiates among neighboring subsystems at the
contract level. If the proposed algorithms find compatible local
contracts, safety property of the interconnected system is certi-
fied. We also show that the algorithms will terminate in finite
steps and will always find a solution when one exists in the case
of acyclic connectivity graphs or for homogeneous systems. We
demonstrate the effectiveness of the proposed algorithms for ve-
hicle platooning and room temperature regulation examples.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.
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Room temperature: a homogeneous system example

x
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xi
x i−
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Room temperature model and its controller over a circular building

ẋi(t) = α(xi+1 + xi−1 − 2xi) + β(te − xi) + γ(th − xi)ui,

yi(t) = xi,

ui = 0.05(xi+1 + xi−1 − 2xi) + 0.05(25− xi)

Each subsystem Gi = (Ui,Wi, Xi, Yi, X
0
i , Ti) has xi as the state, (xi−1, xi+1)

as the internal input, ui as the external input, oi(xi) = xi,
Ui, Xi, Yi = R,Wi = R2.

X0
i = {xi : 1− (xi − 25)2 ≥ 0}, and Qi = {xi : 5

2 − (xi − 25)2 ≥ 0}.

2 2.5 3 3.5 4

-1

0

1
Initial set
Safe region

(a) X0
i and Qi, i = 1, 2, 3.

2 2.5 3 3.5 4

-1

0

1
Initial set
Upd. safe region
Guarantee set

(b) AGC sets for vehicle 3.

2 2.5 3 3.5 4

-1

0

1
Initial set
Upd. safe region
Guarantee set

(c) AGC sets for vehicle 2.

2 2.5 3 3.5 4

-1

0

1
Initial set
Upd. safe region
Guarantee set

2.9 3 3.1
-0.2

0

0.2

(d) AGC sets for vehicle 1.

Figure 2: Results for the platooning example.

2015). An illustration is given in Fig. 3. Each room has its tem-
perature xi, which is affected by neighboring rooms, the heater,
and the environment as follows
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temperature range is Qi = [20, 30] for every room.

We can model the temperature system as an interconnected
system. In particular, each subsystem Gi = (Ui,Wi, Xi,Yi, X0

i ,Ti)
has xi as the state, (xi−1, xi+1) as the internal input, ui as the ex-
ternal input, oi(xi) = xi, Ui, Xi,Yi = R,Wi = R2, X0

i = {xi :
1 − (xi − 25)2 ≥ 0}, and Qi = {xi : 52 − (xi − 25)2 ≥ 0}. The
connectivity relation E is defined that ( j, i) ∈ E if and only if
j = i ± 1, i = 1, 2, . . . ,N. Per Definition 6, this is a homoge-
neous interconnected system, and we will apply Algorithm 4
for this example.

At the first iteration, by solving (7) and (8), we obtain δ⋆ =
20.575, ζ⋆ = 0. Thus, we have constructed a local iAGC Ci =

(IW i
, IXi
, IY i

) with

W i = {(xi−1, xi+1) : −x2
j + 50x j − 620.575 ≥ 0, j = i ± 1},

Xi = Y i = {xi : −x2
i + 50xi − 600 ≥ 0}.

After assigning the same local contract to all subsystems, one
verifies that the contract compatibility condition (9) does not
hold. According to Step 12 of Algorithm 4, we update the safe
region for each room to beQ′i = {xi : −x2

i +50xi−−620.575 ≥ 0}
and start over. For the second iteration, we obtain local iAGC
Ci = (IW i

, IXi
, IY i

) with

W i = {(xi−1, xi+1) : −x2
j + 50x j − 622.138 ≥ 0, j = i ± 1},

Xi = Y i = {xi : −x2
i + 50xi − 623.575 ≥ 0}.

This time, one verifies that the compatibility condition (9) holds,
and thus, certifies the safety of the room temperature system.
An illustration of the assumption and the guarantee sets is given
in Fig. 4. We note that the computation expense is not related to

x
2

xi
x i−

1x
i+1

x1xN

x N
−
1

Figure 3: Room temperature scenario.
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Figure 4: Assumption/guarantee sets for the room temperature example. Left:
iteration 1, right: iteration 2.

the number of rooms N, and only small-size SOS optimization
problems involving 3 independent variables are to be solved.
This is in contrast to a naı̈ve SOS approach for synthesizing a
barrier function, which is intractable when thousands of rooms
are involved.

5. Conclusions

In this work, we propose a safety verification scheme for in-
terconnected continuous-time nonlinear systems based on assume-
guarantee contracts (AGCs) and sum-of-squares (SOS) programs.
The proposed scheme uses SOS optimization to calculate local
invariance AGCs by synthesizing local (control) barrier func-
tions, and then negotiates among neighboring subsystems at the
contract level. If the proposed algorithms find compatible local
contracts, safety property of the interconnected system is certi-
fied. We also show that the algorithms will terminate in finite
steps and will always find a solution when one exists in the case
of acyclic connectivity graphs or for homogeneous systems. We
demonstrate the effectiveness of the proposed algorithms for ve-
hicle platooning and room temperature regulation examples.
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Summary

1 In this work, we proposed an SOS and AGC framework for safety
verification of interconnected systems;

2 Proposed contract negotiation algorithms are shown to be complete
for acyclic graphs or homogeneous systems;

3 Future work includes extension to general graphs with completeness
guarantees as well as better implementation.

Any questions? Contact us!
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