A contract negotiation scheme for safety verification of interconnected systems

Xiao Tan a , Antonis Papachristodoulou b , Dimos V. Dimarogonas a

 a School of EECS, KTH Royal Institute of Technology, Sweden b Department of Engineering Science, University of Oxford, United Kingdom</sup>

27th June 2024

Safety verification for interconnected systems

- ▶ Engineering systems are becoming more complex, closely interconnected in dynamics and safety requirements;
- ▶ Before deployment of new control schemes, verifying safety of the closed-loop interconnected systems is vital;
- \triangleright Simulation/experiments/tests require extensive resources with possible existence of corner cases;
- ▶ Yet, most existing safety verification algorithms are restricted to small-size problems.

Safety of interconnected systems

Continuous-time system: $G=(U, W, X, Y, X^0, \mathcal{T})$

$$
\mathcal{T}: \quad \dot{x}(t) = f(x, w) + g(x, w)u, \quad o: x \mapsto y \tag{1}
$$

Safety of interconnected systems

Continuous-time system: $G=(U, W, X, Y, X^0, \mathcal{T})$

$$
\mathcal{T}: \quad \dot{x}(t) = f(x, w) + g(x, w)u, \quad o: x \mapsto y \tag{1}
$$

Denote by I_B the set of signals that only take values in the set B.

Safety: given safe region $Q \subseteq X$, G is safe w.r.t. $W \subseteq W$ if

$$
\exists u|_{[0,t]} \in I_U \text{ s.t. } x|_{[0,t]} \in I_{\mathcal{Q}} \text{ for all } t > 0
$$

for all initial states $x_0\in X^0$ and all internal input signals $w|_{[0,t]}\in I_{\underline{W}}.$

Existing works on safety verification

The existence of a safety certificate \implies system safety is verified.

Incomplete list of existing methods for small-size systems

- \bullet sum-of-squares approaches^{1,2}
- \bullet data-driven/learning-based approaches^{3,4}
- ³ Hamiltonian-Jacobi reachability analysis⁵

¹A. Clark, "Verification and synthesis of control barrier functions," in 2021 60th IEEE Conference on Decision and Control (CDC), 2021, pp. 6105–6112.

Proceedings of the 24th International Conference on Hybrid Systems: Computation and Control, 2021, pp. 1–11.

⁵ J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, "Robust control barrier–value functions for safety-critical control," in 2021 60th IEEE Conference on Decision and Control (CDC), IEEE, 2021, pp. 6814–6821.

 $2H$. Wang, K. Margellos, and A. Papachristodoulou, "Safety verification and controller synthesis for systems with input constraints," IFAC-PapersOnLine, vol. 56, no. 2, pp. 1698–1703, 2023.

³A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni, "Learning control barrier functions from expert demonstrations," in 2020 59th IEEE Conference on Decision and Control (CDC), IEEE, 2020, pp. 3717–3724.

⁴A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, "FOSSIL: A software tool for the formal synthesis of Lyapunov functions and barrier certificates using neural networks," in

Existing works on safety verification

The existence of a safety certificate \implies system safety is verified.

Methods for large-size systems: compositional reasoning.

1 small-gain-like conditions on local ISSafety property^{6,7}

² centralized Lyapunov function construction⁸

However, adaptation on local safety property usually requires a central computation node.

^{8&}lt;sub>S. Coogan and M. Arcak, "A dissipativity approach to safety verification for interconnected systems,"</sub> Transactions on Automatic Control, vol. 60, no. 6, pp. 1722-1727, 2014.

[Problem introduction](#page-1-0)
 Problem introduction 4 / 15 Change interconnected system $G = \langle (G_i)_{i \in \mathcal{I}}, \mathcal{E} \rangle$
 **Problem introduction of control barrier functions for interconnected control systems," in

struction of con** G_q Gi G_l) G_k (G_m) G_j $(\mathcal{I}, \mathcal{E})$ $\begin{picture}(180,180)(-20,180$

⁶P. Jagtap, A. Swikir, and M. Zamani, "Compositional construction of control barrier functions for interconnected control systems," in Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–11.

⁷Z. Lyu, X. Xu, and Y. Hong, "Small-gain theorem for safety verification of interconnected systems," Automatica, vol. 139, p. 110 178, 2022.

Problem and proposed solution

Problems

Given interconnected system $\langle (G_i)_{i\in\mathcal{I}}, \mathcal{E}\rangle, G_i=(U_i,W_i,X_i,Y_i,X_i^0,\mathcal{T}_i),$ control laws $k_i(x_i,w_i)$, and safe region $\Pi_{i\in\mathcal{I}}\mathcal{Q}_i$. Determine if the closed-loop system is safe.

Problem and proposed solution

Problems

Given interconnected system $\langle (G_i)_{i\in\mathcal{I}}, \mathcal{E}\rangle, G_i=(U_i,W_i,X_i,Y_i,X_i^0,\mathcal{T}_i),$ control laws $k_i(x_i,w_i)$, and safe region $\Pi_{i\in\mathcal{I}}\mathcal{Q}_i$. Determine if the closed-loop system is safe.

Design a computationally tractable approach that locally constructs and adapts safety properties for compositional reasoning

Problem and proposed solution

Problems

Given interconnected system $\langle (G_i)_{i\in\mathcal{I}}, \mathcal{E}\rangle, G_i=(U_i,W_i,X_i,Y_i,X_i^0,\mathcal{T}_i),$ control laws $k_i(x_i,w_i)$, and safe region $\Pi_{i\in\mathcal{I}}\mathcal{Q}_i$. Determine if the closed-loop system is safe.

Design a computationally tractable approach that locally constructs and adapts safety properties for compositional reasoning

Proposed solution:

Sum-of-squares (SOS) for constructing local barrier certificates $+$ Assume-guarantee contracts (AGC) for compositional reasoning. $+$ Contract negotiation scheme with completeness guarantee

1 For subsystem G_i and its safe region Q_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot)\in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot)\in I_{\underline{X}_i}$

 \bullet For subsystem G_i and its safe region \mathcal{Q}_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot)\in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot)\in I_{\underline{X}_i}$

 $\bullet\,$ local safety condition $\underline{X}^0_i\subseteq \underline{X}_i\subseteq \mathcal{Q}_i$

1 For subsystem G_i and its safe region Q_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot)\in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot)\in I_{\underline{X}_i}$

\n- local safety condition
$$
\underline{X}_i^0 \subseteq \underline{X}_i \subseteq \mathcal{Q}_i
$$
\n

 \bullet safety property composition $(I_{\underline{W}_i},I_{\underline{X}_i},I_{\underline{Y}_i}), i\in\mathcal{I}$

⁹ A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109910,

1 For subsystem G_i and its safe region Q_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot)\in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot)\in I_{\underline{X}_i}$

- $\bullet\,$ local safety condition $\underline{X}^0_i\subseteq \underline{X}_i\subseteq \mathcal{Q}_i$
- \bullet safety property composition $(I_{\underline{W}_i},I_{\underline{X}_i},I_{\underline{Y}_i}), i\in\mathcal{I}$
	- composition condition

9 A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109910,

1 For subsystem G_i and its safe region Q_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot)\in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot)\in I_{\underline{X}_i}$

- $\bullet\,$ local safety condition $\underline{X}^0_i\subseteq \underline{X}_i\subseteq \mathcal{Q}_i$
- \bullet safety property composition $(I_{\underline{W}_i},I_{\underline{X}_i},I_{\underline{Y}_i}), i\in\mathcal{I}$
	- composition condition
	- circular reasoning issue: mild regularity condition required by assume-guarantee contracts⁹

⁹A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109 910,

1 For subsystem G_i and its safe region Q_i

• SOS approach constructs an assume-guarantee contract $C_i = (I_{\underline{W}_i}, I_{\underline{X}_i}, I_{\underline{Y}_i})$, meaning

Assume $w_i(\cdot)\in I_{\underline{W}_i}$, then it guarantees $x_i(\cdot)\in I_{\underline{X}_i}$

- $\bullet\,$ local safety condition $\underline{X}^0_i\subseteq \underline{X}_i\subseteq \mathcal{Q}_i$
- \bullet safety property composition $(I_{\underline{W}_i},I_{\underline{X}_i},I_{\underline{Y}_i}), i\in\mathcal{I}$
	- composition condition
	- circular reasoning issue: mild regularity condition required by assume-guarantee contracts⁹
- **3** How to locally adapt AGCs if composition condition is not met?

⁹A. Saoud, A. Girard, and L. Fribourg, "Assume-guarantee contracts for continuous-time systems," Automatica, vol. 134, p. 109 910,

[Overall scheme](#page-9-0) 6 / 15

Assumptions

We assume the following:

- \bullet The local feedback law $u_i=k_i(x_i,w_i)\in U_i$ is known. Denote the closed-loop dynamics $\dot{x}_i = F_i(x_i, w_i)$;
- **2** The class K function $\alpha(\cdot)$ in CBF conditions is chosen to be a linear function with constant gain a .
- \bullet The initial set X_i^0 , safe region \mathcal{Q}_i , and the internal input set W_i are super-level sets, i.e., $X_i^0 = \{x_i : b_i^0(x_i) \ge 0\}, \mathcal{Q}_i = \{x_i : q_i(x_i) \ge 0\}$ $0\}, W_i = \{(y_{j_1}, y_{j_2}, \dots, y_{j_p}) : d^i_{j_k}(y_{j_k}) \geq 0, k =$ $1, 2, \ldots, p$, where $N(i) = \{j_1, j_2, \ldots, j_p\}$.
- \bullet All the functions $b_i^0, q_i, d_{j_k}^i(y_{j_k}), f_i, g_i, k_i$ are polynomials.
- \bullet The subsets of W_i, \mathcal{Q}_i , i.e., $\underline{W}_i, \underline{\mathcal{Q}}_i$ are chosen in the form of

$$
\underline{\mathcal{Q}}_i = \{x_i : q_i(x_i) \ge \zeta \mathbf{1} \text{ for some } \zeta \ge 0\},
$$

$$
\underline{W}_i = \{ (y_{j_1}, \dots, y_{j_p}) : d^i_{j_k}(y_{j_k}) \ge \delta \mathbf{1} \text{ for some } \delta \ge 0 \}.
$$

⁶ We restrict the search for non-negative polynomials to the set of SOS polynomials up to a certain degree.

Local AGC construction

If there exist SOS polynomials $\sigma_{init}, \sigma_{safe} \in \Sigma[x], \sigma_k \in \Sigma[x, y_k],$ $k = 1, 2, \ldots, p$, polynomial $h \in \mathcal{R}(x)$, and positive ϵ, a, δ such that

$$
h(x) - \sigma_{init}b^{0}(x) \in \Sigma[x]; \tag{2a}
$$

$$
\mathsf{safe region:} \qquad \qquad -h(x) + \sigma_{safe} q(x) \in \Sigma[x]; \qquad \qquad \textbf{(2b)}
$$

$$
\begin{aligned}\n\mathsf{BF\ condition:} \qquad \nabla h(x) F(x, y_1, \dots, y_p) + a h(x) \\
&\quad - \sum_{k=1}^p \sigma_k(d_k(y_k) - \delta) - \epsilon \in \Sigma[x, y_1, \dots, y_p].\n\end{aligned}\n\tag{2c}
$$

then, letting $W = \{(y_1, \ldots, y_k, \ldots, y_p) : d_k(y_k) \ge \delta\}$, we find an assume-guarantee contract $C = (I_W, I_X, I_Y)$

*Subscript i is neglected for notational brevity.

initial set:

[Local AGC construction](#page-16-0) 8 / 15

AGC composition and negotiations

Composition condition: $\Pi_{i \in N(i)} \underline{Y}_i \subseteq \underline{W}_i, \forall i \in \mathcal{I}$

- **1** We refer to the process of refining local AGCs as negotiations.
- ² Negotiations under two special cases are discussed.

Two special sets when constructing local AGCs

Intuitively, the larger \underline{W}_i is, the smaller \underline{X}_i could be.

 \blacktriangleright Maximal internal input set W^\star : largest disturbance a subsystem can tolerate while still remaining safe

$$
\min_{\delta} \delta
$$

s.t. (2a), (2b), (2c), $\delta \ge 0$ (3)

Minimal safe region Q^* under the maximal internal input set: smallest impact a subsystem to its child nodes

$$
\max \zeta
$$

s.t. (2a), (2c), $\zeta \ge 0$

$$
-h(x) + \sigma_{safe}(q(x) - \zeta) \in \Sigma[x]
$$
 (4)

*Subscript i is neglected for notational brevity.

Special case: Acyclic connectivity graph

When the connectivity graph is a tree, the hierarchical structure resembles a client-contractor relation model.

Algorithm 1

- **1** Start with the leaf nodes. Calculate the maximal internal input sets;
- \bullet For node i, if all child nodes have specified the largest internal input set, then compute its maximal internal input set.
- ³ Propagate towards root nodes. Return False if infeasible.
- ▶ Algorithm 1 terminates in finite steps and returns either True or False.
- \triangleright If Algorithm 1 returns True, then compatible local AGCs are found.
- ▶ If Algorithm 1 returns False, then there exist no compatible iAGCs under our Assumption.

[AGC negotiations](#page-17-0) 11 / 15

Special case: Homogeneous interconnected system

homogeneous interconnected system $G = \langle (G_i)_{i \in \mathcal{I}}, \mathcal{E} \rangle$

Algorithm 2

- \bullet Take an arbitrary node G_i , calculate the AGC $C_i = (I_{\underline{W}^*_i}, I_{\underline{X}^*_i}, I_{\underline{Y}^*_i})$ with \underline{W}_i^* the maximal internal input sets and \underline{X}_i^* the corresp. minimal safe region;
- **2** If not compatible, update Q_i to be the largest inner-approximation of $\bigcap_{k\in\mathsf{Child}(i)}o_i^{-1}(\mathsf{Proj}_i(\underline{W}_k))\cap \mathcal{Q}_i$
- **3** Goto Step 1. Return False if infeasible.
- ▶ Algorithm 2 terminates eventually and returns either True or False.
- ▶ If Algorithm 2 returns True, then compatible local AGCs are found.
- If Algorithm 2 returns False, then there exist no common and compatible AGCs under our Assumption.

[AGC negotiations](#page-17-0) 12 / 15

Vehicular platooning: an acyclic graph example

Vehicle dynamics relative to vehicle 0 (leader):

$$
\dot{\tilde{p}}_i = \tilde{v}_i, \qquad \dot{\tilde{v}}_i = \tilde{u}_i - (\tilde{v}_i - \tilde{v}_{i-1})^3 \tag{5}
$$

Choose local variable $x_i = (d_i, \tilde{v}_i)$, $d_i = \tilde{p}_i - \tilde{p}_{i-1} - l$. Local controller

$$
\tilde{u}_i = -(\tilde{v}_i - \tilde{v}_{i-1}) - (d_i - 3) - (d_i - 3)^3, i \in \mathcal{I}.
$$

The initial state set, safe region as well as local AGCs are:

Room temperature: a homogeneous system example 2 2.5 3 3.5 4 2 2.5 3 3.5 4

Room temperature model and its controller over a circular building $\overline{}$

temperature model and its controller over a circular building
\n
$$
\begin{aligned}\n\dot{x}_i(t) &= \alpha(x_{i+1} + x_{i-1} - 2x_i) + \beta(t_e - x_i) + \gamma(t_h - x_i)u_i, \\
y_i(t) &= x_i, \\
u_i &= 0.05(x_{i+1} + x_{i-1} - 2x_i) + 0.05(25 - x_i)\n\end{aligned}
$$
\nsubsystem $G_i = (U_i, W_i, X_i, Y_i, X_i^0, \mathcal{T}_i)$ has x_i as the state, (x_{i-1})

Each subsystem $G_i = (U_i, W_i, X_i, Y_i, X_i^0, \mathcal{T}_i)$ has x_i as the state, (x_{i-1}, x_{i+1}) as the internal input, u_i as the external input, $o_i(x_i) = x_i$, $U_i, X_i, Y_i = \mathbb{R}, W_i = \mathbb{R}^2.$ $X_i^0 = \{x_i: 1 - (x_i - 25)^2 \ge 0\}$, and $\mathcal{Q}_i = \{x_i: 5^2 - (x_i - 25)^2 \ge 0\}$. where *xⁱ*+¹, *xⁱ*−¹ are the temperatures of room *i*+1 and *i*−1 (and we conveniently let *x*0(*t*) = *xN*(*t*), *x^N*+¹(*t*) = *x*1(*t*)), *te*, *t^h* are the $\frac{dS}{dt}$. \mathbf{v}_i , \mathbf{v}_i room, the environment, and the heater. *uⁱ* denotes the valve con-

Summary

- **1** In this work, we proposed an SOS and AGC framework for safety verification of interconnected systems;
- ² Proposed contract negotiation algorithms are shown to be complete for acyclic graphs or homogeneous systems;
- **3** Future work includes extension to general graphs with completeness guarantees as well as better implementation.

Any questions? Contact us!

